Add support CO-DETR (MMDetection)
This commit is contained in:
@@ -18,7 +18,7 @@ NVIDIA DeepStream SDK 7.1 / 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 /
|
|||||||
* Support for non square models
|
* Support for non square models
|
||||||
* Models benchmarks
|
* Models benchmarks
|
||||||
* Support for Darknet models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing
|
* Support for Darknet models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing
|
||||||
* Support for RT-DETR, YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, Gold-YOLO, RTMDet (MMYOLO), YOLOX, YOLOR, YOLOv9, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
|
* Support for RT-DETR, CO-DETR (MMDetection), YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, Gold-YOLO, RTMDet (MMYOLO), YOLOX, YOLOR, YOLOv9, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
|
||||||
* GPU bbox parser
|
* GPU bbox parser
|
||||||
* Custom ONNX model parser
|
* Custom ONNX model parser
|
||||||
* Dynamic batch-size
|
* Dynamic batch-size
|
||||||
@@ -49,6 +49,7 @@ NVIDIA DeepStream SDK 7.1 / 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 /
|
|||||||
* [DAMO-YOLO usage](docs/DAMOYOLO.md)
|
* [DAMO-YOLO usage](docs/DAMOYOLO.md)
|
||||||
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
|
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
|
||||||
* [YOLO-NAS usage](docs/YOLONAS.md)
|
* [YOLO-NAS usage](docs/YOLONAS.md)
|
||||||
|
* [CO-DETR (MMDetection) usage](docs/CODETR.md)
|
||||||
* [RT-DETR PyTorch usage](docs/RTDETR_PyTorch.md)
|
* [RT-DETR PyTorch usage](docs/RTDETR_PyTorch.md)
|
||||||
* [RT-DETR Paddle usage](docs/RTDETR_Paddle.md)
|
* [RT-DETR Paddle usage](docs/RTDETR_Paddle.md)
|
||||||
* [RT-DETR Ultralytics usage](docs/RTDETR_Ultralytics.md)
|
* [RT-DETR Ultralytics usage](docs/RTDETR_Ultralytics.md)
|
||||||
@@ -220,8 +221,9 @@ NVIDIA DeepStream SDK 7.1 / 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 /
|
|||||||
* [RTMDet (MMYOLO)](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet)
|
* [RTMDet (MMYOLO)](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet)
|
||||||
* [Gold-YOLO](https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO)
|
* [Gold-YOLO](https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO)
|
||||||
* [DAMO-YOLO](https://github.com/tinyvision/DAMO-YOLO)
|
* [DAMO-YOLO](https://github.com/tinyvision/DAMO-YOLO)
|
||||||
* [PP-YOLOE / PP-YOLOE+](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe)
|
* [PP-YOLOE / PP-YOLOE+](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.8/configs/ppyoloe)
|
||||||
* [YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md)
|
* [YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md)
|
||||||
|
* [CO-DETR (MMDetection)](https://github.com/open-mmlab/mmdetection/tree/main/projects/CO-DETR)
|
||||||
* [RT-DETR](https://github.com/lyuwenyu/RT-DETR)
|
* [RT-DETR](https://github.com/lyuwenyu/RT-DETR)
|
||||||
|
|
||||||
##
|
##
|
||||||
|
|||||||
28
config_infer_primary_codetr.txt
Normal file
28
config_infer_primary_codetr.txt
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
[property]
|
||||||
|
gpu-id=0
|
||||||
|
net-scale-factor=0.0039215697906911373
|
||||||
|
model-color-format=0
|
||||||
|
onnx-file=co_dino_5scale_r50_1x_coco-7481f903.onnx
|
||||||
|
model-engine-file=model_b1_gpu0_fp32.engine
|
||||||
|
#int8-calib-file=calib.table
|
||||||
|
labelfile-path=labels.txt
|
||||||
|
batch-size=1
|
||||||
|
network-mode=0
|
||||||
|
num-detected-classes=80
|
||||||
|
interval=0
|
||||||
|
gie-unique-id=1
|
||||||
|
process-mode=1
|
||||||
|
network-type=0
|
||||||
|
cluster-mode=2
|
||||||
|
maintain-aspect-ratio=1
|
||||||
|
symmetric-padding=0
|
||||||
|
#workspace-size=2000
|
||||||
|
parse-bbox-func-name=NvDsInferParseYolo
|
||||||
|
#parse-bbox-func-name=NvDsInferParseYoloCuda
|
||||||
|
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
|
||||||
|
engine-create-func-name=NvDsInferYoloCudaEngineGet
|
||||||
|
|
||||||
|
[class-attrs-all]
|
||||||
|
nms-iou-threshold=0.45
|
||||||
|
pre-cluster-threshold=0.25
|
||||||
|
topk=300
|
||||||
187
docs/CODETR.md
Normal file
187
docs/CODETR.md
Normal file
@@ -0,0 +1,187 @@
|
|||||||
|
# CO-DETR (MMDetection) usage
|
||||||
|
|
||||||
|
* [Convert model](#convert-model)
|
||||||
|
* [Compile the lib](#compile-the-lib)
|
||||||
|
* [Edit the config_infer_primary_codetr file](#edit-the-config_infer_primary_codetr-file)
|
||||||
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
||||||
|
* [Testing the model](#testing-the-model)
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Convert model
|
||||||
|
|
||||||
|
#### 1. Download the CO-DETR (MMDetection) repo and install the requirements
|
||||||
|
|
||||||
|
```
|
||||||
|
git clone https://github.com/open-mmlab/mmdetection.git
|
||||||
|
cd mmdetection
|
||||||
|
pip3 install openmim
|
||||||
|
mim install mmengine
|
||||||
|
mim install mmdeploy
|
||||||
|
mim install "mmcv>=2.0.0rc4,<2.2.0"
|
||||||
|
pip3 install -v -e .
|
||||||
|
pip3 install onnx onnxslim onnxruntime
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: It is recommended to use Python virtualenv.
|
||||||
|
|
||||||
|
#### 2. Copy conversor
|
||||||
|
|
||||||
|
Copy the `export_codetr.py` file from `DeepStream-Yolo/utils` directory to the `mmdetection` folder.
|
||||||
|
|
||||||
|
#### 3. Download the model
|
||||||
|
|
||||||
|
Download the `pth` file from [CO-DETR (MMDetection)](https://github.com/open-mmlab/mmdetection/tree/main/projects/CO-DETR) releases (example for Co-DINO R50 DETR*)
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://download.openmmlab.com/mmdetection/v3.0/codetr/co_dino_5scale_r50_1x_coco-7481f903.pth
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: You can use your custom model.
|
||||||
|
|
||||||
|
#### 4. Convert model
|
||||||
|
|
||||||
|
Generate the ONNX model file (example for Co-DINO R50 DETR)
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 export_codetr.py -w co_dino_5scale_r50_1x_coco-7481f903.pth -c projects/CO-DETR/configs/codino/co_dino_5scale_r50_8xb2_1x_coco.py --dynamic
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To change the inference size (defaut: 640)
|
||||||
|
|
||||||
|
```
|
||||||
|
-s SIZE
|
||||||
|
--size SIZE
|
||||||
|
-s HEIGHT WIDTH
|
||||||
|
--size HEIGHT WIDTH
|
||||||
|
```
|
||||||
|
|
||||||
|
Example for 1280
|
||||||
|
|
||||||
|
```
|
||||||
|
-s 1280
|
||||||
|
```
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
```
|
||||||
|
-s 1280 1280
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
|
||||||
|
|
||||||
|
```
|
||||||
|
--simplify
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
|
||||||
|
|
||||||
|
```
|
||||||
|
--dynamic
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To use static batch-size (example for batch-size = 4)
|
||||||
|
|
||||||
|
```
|
||||||
|
--batch 4
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 11.
|
||||||
|
|
||||||
|
```
|
||||||
|
--opset 12
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5. Copy generated files
|
||||||
|
|
||||||
|
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Compile the lib
|
||||||
|
|
||||||
|
1. Open the `DeepStream-Yolo` folder and compile the lib
|
||||||
|
|
||||||
|
2. Set the `CUDA_VER` according to your DeepStream version
|
||||||
|
|
||||||
|
```
|
||||||
|
export CUDA_VER=XY.Z
|
||||||
|
```
|
||||||
|
|
||||||
|
* x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
DeepStream 7.1 = 12.6
|
||||||
|
DeepStream 7.0 / 6.4 = 12.2
|
||||||
|
DeepStream 6.3 = 12.1
|
||||||
|
DeepStream 6.2 = 11.8
|
||||||
|
DeepStream 6.1.1 = 11.7
|
||||||
|
DeepStream 6.1 = 11.6
|
||||||
|
DeepStream 6.0.1 / 6.0 = 11.4
|
||||||
|
DeepStream 5.1 = 11.1
|
||||||
|
```
|
||||||
|
|
||||||
|
* Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
DeepStream 7.1 = 12.6
|
||||||
|
DeepStream 7.0 / 6.4 = 12.2
|
||||||
|
DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
|
||||||
|
DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Make the lib
|
||||||
|
|
||||||
|
```
|
||||||
|
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Edit the config_infer_primary_codetr file
|
||||||
|
|
||||||
|
Edit the `config_infer_primary_codetr.txt` file according to your model (example for Co-DINO R50 DETR with 80 classes)
|
||||||
|
|
||||||
|
```
|
||||||
|
[property]
|
||||||
|
...
|
||||||
|
onnx-file=co_dino_5scale_r50_1x_coco-7481f903.pth.onnx
|
||||||
|
...
|
||||||
|
num-detected-classes=80
|
||||||
|
...
|
||||||
|
parse-bbox-func-name=NvDsInferParseYolo
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: The **CO-DETR (MMDetection)** resizes the input with left/top padding. To get better accuracy, use
|
||||||
|
|
||||||
|
```
|
||||||
|
[property]
|
||||||
|
...
|
||||||
|
maintain-aspect-ratio=1
|
||||||
|
symmetric-padding=0
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Edit the deepstream_app_config file
|
||||||
|
|
||||||
|
```
|
||||||
|
...
|
||||||
|
[primary-gie]
|
||||||
|
...
|
||||||
|
config-file=config_infer_primary_codetr.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Testing the model
|
||||||
|
|
||||||
|
```
|
||||||
|
deepstream-app -c deepstream_app_config.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
||||||
|
|
||||||
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|
||||||
@@ -14,7 +14,7 @@
|
|||||||
|
|
||||||
#### 1. Download the PaddleDetection repo and install the requirements
|
#### 1. Download the PaddleDetection repo and install the requirements
|
||||||
|
|
||||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md
|
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.8/docs/tutorials/INSTALL.md
|
||||||
|
|
||||||
**NOTE**: It is recommended to use Python virtualenv.
|
**NOTE**: It is recommended to use Python virtualenv.
|
||||||
|
|
||||||
@@ -24,7 +24,7 @@ Copy the `export_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the
|
|||||||
|
|
||||||
#### 3. Download the model
|
#### 3. Download the model
|
||||||
|
|
||||||
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe) releases (example for PP-YOLOE+_s)
|
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.8/configs/ppyoloe) releases (example for PP-YOLOE+_s)
|
||||||
|
|
||||||
```
|
```
|
||||||
wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams
|
wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams
|
||||||
|
|||||||
@@ -14,7 +14,7 @@
|
|||||||
|
|
||||||
#### 1. Download the PaddleDetection repo and install the requirements
|
#### 1. Download the PaddleDetection repo and install the requirements
|
||||||
|
|
||||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md
|
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.8/docs/tutorials/INSTALL.md
|
||||||
|
|
||||||
```
|
```
|
||||||
git clone https://github.com/lyuwenyu/RT-DETR.git
|
git clone https://github.com/lyuwenyu/RT-DETR.git
|
||||||
|
|||||||
149
utils/export_codetr.py
Normal file
149
utils/export_codetr.py
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
import os
|
||||||
|
import types
|
||||||
|
import onnx
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
from projects import *
|
||||||
|
from mmengine.registry import MODELS
|
||||||
|
from mmdeploy.utils import load_config
|
||||||
|
from mmdet.utils import register_all_modules
|
||||||
|
from mmengine.model import revert_sync_batchnorm
|
||||||
|
from mmengine.runner.checkpoint import load_checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
class DeepStreamOutput(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
boxes = []
|
||||||
|
scores = []
|
||||||
|
labels = []
|
||||||
|
for det in x:
|
||||||
|
boxes.append(det.bboxes)
|
||||||
|
scores.append(det.scores.unsqueeze(-1))
|
||||||
|
labels.append(det.labels.unsqueeze(-1))
|
||||||
|
boxes = torch.stack(boxes, dim=0)
|
||||||
|
scores = torch.stack(scores, dim=0)
|
||||||
|
labels = torch.stack(labels, dim=0)
|
||||||
|
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def forward_deepstream(self, batch_inputs, batch_data_samples):
|
||||||
|
b, _, h, w = batch_inputs.shape
|
||||||
|
batch_data_samples = [{'batch_input_shape': (h, w), 'img_shape': (h, w)} for _ in range(b)]
|
||||||
|
img_feats = self.extract_feat(batch_inputs)
|
||||||
|
return self.predict_query_head(img_feats, batch_data_samples, rescale=False)
|
||||||
|
|
||||||
|
|
||||||
|
def query_head_predict_deepstream(self, feats, batch_data_samples, rescale=False):
|
||||||
|
with torch.no_grad():
|
||||||
|
outs = self.forward(feats, batch_data_samples)
|
||||||
|
predictions = self.predict_by_feat(
|
||||||
|
*outs, batch_img_metas=batch_data_samples, rescale=rescale)
|
||||||
|
return predictions
|
||||||
|
|
||||||
|
|
||||||
|
def codetr_export(weights, config, device):
|
||||||
|
register_all_modules()
|
||||||
|
model_cfg = load_config(config)[0]
|
||||||
|
model = deepcopy(model_cfg.model)
|
||||||
|
model.pop('pretrained', None)
|
||||||
|
for key in model['train_cfg']:
|
||||||
|
if 'rpn_proposal' in key:
|
||||||
|
key['rpn_proposal'] = {}
|
||||||
|
model['test_cfg'] = [{}, {'rpn': {}, 'rcnn': {}}, {}]
|
||||||
|
preprocess_cfg = deepcopy(model_cfg.get('preprocess_cfg', {}))
|
||||||
|
preprocess_cfg.update(deepcopy(model_cfg.get('data_preprocessor', {})))
|
||||||
|
model.setdefault('data_preprocessor', preprocess_cfg)
|
||||||
|
model = MODELS.build(model)
|
||||||
|
load_checkpoint(model, weights, map_location=device)
|
||||||
|
model = revert_sync_batchnorm(model)
|
||||||
|
if hasattr(model, 'backbone') and hasattr(model.backbone, 'switch_to_deploy'):
|
||||||
|
model.backbone.switch_to_deploy()
|
||||||
|
if hasattr(model, 'switch_to_deploy') and callable(model.switch_to_deploy):
|
||||||
|
model.switch_to_deploy()
|
||||||
|
model = model.to(device)
|
||||||
|
model.eval()
|
||||||
|
del model.data_preprocessor
|
||||||
|
model._forward = types.MethodType(forward_deepstream, model)
|
||||||
|
model.query_head.predict = types.MethodType(query_head_predict_deepstream, model.query_head)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def suppress_warnings():
|
||||||
|
import warnings
|
||||||
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
suppress_warnings()
|
||||||
|
|
||||||
|
print(f'\nStarting: {args.weights}')
|
||||||
|
|
||||||
|
print('Opening CO-DETR model')
|
||||||
|
|
||||||
|
device = torch.device('cpu')
|
||||||
|
model = codetr_export(args.weights, args.config, device)
|
||||||
|
|
||||||
|
model = nn.Sequential(model, DeepStreamOutput())
|
||||||
|
|
||||||
|
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||||
|
|
||||||
|
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||||
|
onnx_output_file = f'{args.weights}.onnx'
|
||||||
|
|
||||||
|
dynamic_axes = {
|
||||||
|
'input': {
|
||||||
|
0: 'batch'
|
||||||
|
},
|
||||||
|
'output': {
|
||||||
|
0: 'batch'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
print('Exporting the model to ONNX')
|
||||||
|
torch.onnx.export(
|
||||||
|
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||||
|
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||||
|
)
|
||||||
|
|
||||||
|
if args.simplify:
|
||||||
|
print('Simplifying the ONNX model')
|
||||||
|
import onnxslim
|
||||||
|
model_onnx = onnx.load(onnx_output_file)
|
||||||
|
model_onnx = onnxslim.slim(model_onnx)
|
||||||
|
onnx.save(model_onnx, onnx_output_file)
|
||||||
|
|
||||||
|
print(f'Done: {onnx_output_file}\n')
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
import argparse
|
||||||
|
parser = argparse.ArgumentParser(description='DeepStream CO-DETR conversion')
|
||||||
|
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pth) file path (required)')
|
||||||
|
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
|
||||||
|
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||||
|
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
|
||||||
|
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||||
|
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||||
|
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if not os.path.isfile(args.weights):
|
||||||
|
raise SystemExit('Invalid weights file')
|
||||||
|
if not os.path.isfile(args.config):
|
||||||
|
raise SystemExit('Invalid config file')
|
||||||
|
if args.dynamic and args.batch > 1:
|
||||||
|
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
args = parse_args()
|
||||||
|
main(args)
|
||||||
Reference in New Issue
Block a user