Add support CO-DETR (MMDetection)

This commit is contained in:
Marcos Luciano
2024-11-27 23:16:57 -03:00
parent db3a21133e
commit e5d994e2d7
6 changed files with 371 additions and 5 deletions

View File

@@ -18,7 +18,7 @@ NVIDIA DeepStream SDK 7.1 / 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 /
* Support for non square models
* Models benchmarks
* Support for Darknet models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing
* Support for RT-DETR, YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, Gold-YOLO, RTMDet (MMYOLO), YOLOX, YOLOR, YOLOv9, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
* Support for RT-DETR, CO-DETR (MMDetection), YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, Gold-YOLO, RTMDet (MMYOLO), YOLOX, YOLOR, YOLOv9, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing
* GPU bbox parser
* Custom ONNX model parser
* Dynamic batch-size
@@ -49,6 +49,7 @@ NVIDIA DeepStream SDK 7.1 / 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 /
* [DAMO-YOLO usage](docs/DAMOYOLO.md)
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
* [YOLO-NAS usage](docs/YOLONAS.md)
* [CO-DETR (MMDetection) usage](docs/CODETR.md)
* [RT-DETR PyTorch usage](docs/RTDETR_PyTorch.md)
* [RT-DETR Paddle usage](docs/RTDETR_Paddle.md)
* [RT-DETR Ultralytics usage](docs/RTDETR_Ultralytics.md)
@@ -220,8 +221,9 @@ NVIDIA DeepStream SDK 7.1 / 7.0 / 6.4 / 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 /
* [RTMDet (MMYOLO)](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet)
* [Gold-YOLO](https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO)
* [DAMO-YOLO](https://github.com/tinyvision/DAMO-YOLO)
* [PP-YOLOE / PP-YOLOE+](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe)
* [PP-YOLOE / PP-YOLOE+](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.8/configs/ppyoloe)
* [YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md)
* [CO-DETR (MMDetection)](https://github.com/open-mmlab/mmdetection/tree/main/projects/CO-DETR)
* [RT-DETR](https://github.com/lyuwenyu/RT-DETR)
##

View File

@@ -0,0 +1,28 @@
[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
model-color-format=0
onnx-file=co_dino_5scale_r50_1x_coco-7481f903.onnx
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
labelfile-path=labels.txt
batch-size=1
network-mode=0
num-detected-classes=80
interval=0
gie-unique-id=1
process-mode=1
network-type=0
cluster-mode=2
maintain-aspect-ratio=1
symmetric-padding=0
#workspace-size=2000
parse-bbox-func-name=NvDsInferParseYolo
#parse-bbox-func-name=NvDsInferParseYoloCuda
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
engine-create-func-name=NvDsInferYoloCudaEngineGet
[class-attrs-all]
nms-iou-threshold=0.45
pre-cluster-threshold=0.25
topk=300

187
docs/CODETR.md Normal file
View File

@@ -0,0 +1,187 @@
# CO-DETR (MMDetection) usage
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_codetr file](#edit-the-config_infer_primary_codetr-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the CO-DETR (MMDetection) repo and install the requirements
```
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip3 install openmim
mim install mmengine
mim install mmdeploy
mim install "mmcv>=2.0.0rc4,<2.2.0"
pip3 install -v -e .
pip3 install onnx onnxslim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_codetr.py` file from `DeepStream-Yolo/utils` directory to the `mmdetection` folder.
#### 3. Download the model
Download the `pth` file from [CO-DETR (MMDetection)](https://github.com/open-mmlab/mmdetection/tree/main/projects/CO-DETR) releases (example for Co-DINO R50 DETR*)
```
wget https://download.openmmlab.com/mmdetection/v3.0/codetr/co_dino_5scale_r50_1x_coco-7481f903.pth
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for Co-DINO R50 DETR)
```
python3 export_codetr.py -w co_dino_5scale_r50_1x_coco-7481f903.pth -c projects/CO-DETR/configs/codino/co_dino_5scale_r50_8xb2_1x_coco.py --dynamic
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
```
--simplify
```
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
```
--dynamic
```
**NOTE**: To use static batch-size (example for batch-size = 4)
```
--batch 4
```
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 11.
```
--opset 12
```
#### 5. Copy generated files
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
##
### Compile the lib
1. Open the `DeepStream-Yolo` folder and compile the lib
2. Set the `CUDA_VER` according to your DeepStream version
```
export CUDA_VER=XY.Z
```
* x86 platform
```
DeepStream 7.1 = 12.6
DeepStream 7.0 / 6.4 = 12.2
DeepStream 6.3 = 12.1
DeepStream 6.2 = 11.8
DeepStream 6.1.1 = 11.7
DeepStream 6.1 = 11.6
DeepStream 6.0.1 / 6.0 = 11.4
DeepStream 5.1 = 11.1
```
* Jetson platform
```
DeepStream 7.1 = 12.6
DeepStream 7.0 / 6.4 = 12.2
DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
```
3. Make the lib
```
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_codetr file
Edit the `config_infer_primary_codetr.txt` file according to your model (example for Co-DINO R50 DETR with 80 classes)
```
[property]
...
onnx-file=co_dino_5scale_r50_1x_coco-7481f903.pth.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
**NOTE**: The **CO-DETR (MMDetection)** resizes the input with left/top padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
...
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_codetr.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.

View File

@@ -14,7 +14,7 @@
#### 1. Download the PaddleDetection repo and install the requirements
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.8/docs/tutorials/INSTALL.md
**NOTE**: It is recommended to use Python virtualenv.
@@ -24,7 +24,7 @@ Copy the `export_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the
#### 3. Download the model
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe) releases (example for PP-YOLOE+_s)
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.8/configs/ppyoloe) releases (example for PP-YOLOE+_s)
```
wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams

View File

@@ -14,7 +14,7 @@
#### 1. Download the PaddleDetection repo and install the requirements
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.8/docs/tutorials/INSTALL.md
```
git clone https://github.com/lyuwenyu/RT-DETR.git

149
utils/export_codetr.py Normal file
View File

@@ -0,0 +1,149 @@
import os
import types
import onnx
import torch
import torch.nn as nn
from copy import deepcopy
from projects import *
from mmengine.registry import MODELS
from mmdeploy.utils import load_config
from mmdet.utils import register_all_modules
from mmengine.model import revert_sync_batchnorm
from mmengine.runner.checkpoint import load_checkpoint
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
boxes = []
scores = []
labels = []
for det in x:
boxes.append(det.bboxes)
scores.append(det.scores.unsqueeze(-1))
labels.append(det.labels.unsqueeze(-1))
boxes = torch.stack(boxes, dim=0)
scores = torch.stack(scores, dim=0)
labels = torch.stack(labels, dim=0)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def forward_deepstream(self, batch_inputs, batch_data_samples):
b, _, h, w = batch_inputs.shape
batch_data_samples = [{'batch_input_shape': (h, w), 'img_shape': (h, w)} for _ in range(b)]
img_feats = self.extract_feat(batch_inputs)
return self.predict_query_head(img_feats, batch_data_samples, rescale=False)
def query_head_predict_deepstream(self, feats, batch_data_samples, rescale=False):
with torch.no_grad():
outs = self.forward(feats, batch_data_samples)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_data_samples, rescale=rescale)
return predictions
def codetr_export(weights, config, device):
register_all_modules()
model_cfg = load_config(config)[0]
model = deepcopy(model_cfg.model)
model.pop('pretrained', None)
for key in model['train_cfg']:
if 'rpn_proposal' in key:
key['rpn_proposal'] = {}
model['test_cfg'] = [{}, {'rpn': {}, 'rcnn': {}}, {}]
preprocess_cfg = deepcopy(model_cfg.get('preprocess_cfg', {}))
preprocess_cfg.update(deepcopy(model_cfg.get('data_preprocessor', {})))
model.setdefault('data_preprocessor', preprocess_cfg)
model = MODELS.build(model)
load_checkpoint(model, weights, map_location=device)
model = revert_sync_batchnorm(model)
if hasattr(model, 'backbone') and hasattr(model.backbone, 'switch_to_deploy'):
model.backbone.switch_to_deploy()
if hasattr(model, 'switch_to_deploy') and callable(model.switch_to_deploy):
model.switch_to_deploy()
model = model.to(device)
model.eval()
del model.data_preprocessor
model._forward = types.MethodType(forward_deepstream, model)
model.query_head.predict = types.MethodType(query_head_predict_deepstream, model.query_head)
return model
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print(f'\nStarting: {args.weights}')
print('Opening CO-DETR model')
device = torch.device('cpu')
model = codetr_export(args.weights, args.config, device)
model = nn.Sequential(model, DeepStreamOutput())
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying the ONNX model')
import onnxslim
model_onnx = onnx.load(onnx_output_file)
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream CO-DETR conversion')
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pth) file path (required)')
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.config):
raise SystemExit('Invalid config file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
main(args)