Files
deepstream_yolo/utils/export_codetr.py
2024-11-27 23:16:57 -03:00

150 lines
5.3 KiB
Python

import os
import types
import onnx
import torch
import torch.nn as nn
from copy import deepcopy
from projects import *
from mmengine.registry import MODELS
from mmdeploy.utils import load_config
from mmdet.utils import register_all_modules
from mmengine.model import revert_sync_batchnorm
from mmengine.runner.checkpoint import load_checkpoint
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
boxes = []
scores = []
labels = []
for det in x:
boxes.append(det.bboxes)
scores.append(det.scores.unsqueeze(-1))
labels.append(det.labels.unsqueeze(-1))
boxes = torch.stack(boxes, dim=0)
scores = torch.stack(scores, dim=0)
labels = torch.stack(labels, dim=0)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def forward_deepstream(self, batch_inputs, batch_data_samples):
b, _, h, w = batch_inputs.shape
batch_data_samples = [{'batch_input_shape': (h, w), 'img_shape': (h, w)} for _ in range(b)]
img_feats = self.extract_feat(batch_inputs)
return self.predict_query_head(img_feats, batch_data_samples, rescale=False)
def query_head_predict_deepstream(self, feats, batch_data_samples, rescale=False):
with torch.no_grad():
outs = self.forward(feats, batch_data_samples)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_data_samples, rescale=rescale)
return predictions
def codetr_export(weights, config, device):
register_all_modules()
model_cfg = load_config(config)[0]
model = deepcopy(model_cfg.model)
model.pop('pretrained', None)
for key in model['train_cfg']:
if 'rpn_proposal' in key:
key['rpn_proposal'] = {}
model['test_cfg'] = [{}, {'rpn': {}, 'rcnn': {}}, {}]
preprocess_cfg = deepcopy(model_cfg.get('preprocess_cfg', {}))
preprocess_cfg.update(deepcopy(model_cfg.get('data_preprocessor', {})))
model.setdefault('data_preprocessor', preprocess_cfg)
model = MODELS.build(model)
load_checkpoint(model, weights, map_location=device)
model = revert_sync_batchnorm(model)
if hasattr(model, 'backbone') and hasattr(model.backbone, 'switch_to_deploy'):
model.backbone.switch_to_deploy()
if hasattr(model, 'switch_to_deploy') and callable(model.switch_to_deploy):
model.switch_to_deploy()
model = model.to(device)
model.eval()
del model.data_preprocessor
model._forward = types.MethodType(forward_deepstream, model)
model.query_head.predict = types.MethodType(query_head_predict_deepstream, model.query_head)
return model
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print(f'\nStarting: {args.weights}')
print('Opening CO-DETR model')
device = torch.device('cpu')
model = codetr_export(args.weights, args.config, device)
model = nn.Sequential(model, DeepStreamOutput())
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying the ONNX model')
import onnxslim
model_onnx = onnx.load(onnx_output_file)
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream CO-DETR conversion')
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pth) file path (required)')
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.config):
raise SystemExit('Invalid config file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
main(args)