Add support CO-DETR (MMDetection)
This commit is contained in:
149
utils/export_codetr.py
Normal file
149
utils/export_codetr.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import os
|
||||
import types
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
|
||||
from projects import *
|
||||
from mmengine.registry import MODELS
|
||||
from mmdeploy.utils import load_config
|
||||
from mmdet.utils import register_all_modules
|
||||
from mmengine.model import revert_sync_batchnorm
|
||||
from mmengine.runner.checkpoint import load_checkpoint
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
boxes = []
|
||||
scores = []
|
||||
labels = []
|
||||
for det in x:
|
||||
boxes.append(det.bboxes)
|
||||
scores.append(det.scores.unsqueeze(-1))
|
||||
labels.append(det.labels.unsqueeze(-1))
|
||||
boxes = torch.stack(boxes, dim=0)
|
||||
scores = torch.stack(scores, dim=0)
|
||||
labels = torch.stack(labels, dim=0)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def forward_deepstream(self, batch_inputs, batch_data_samples):
|
||||
b, _, h, w = batch_inputs.shape
|
||||
batch_data_samples = [{'batch_input_shape': (h, w), 'img_shape': (h, w)} for _ in range(b)]
|
||||
img_feats = self.extract_feat(batch_inputs)
|
||||
return self.predict_query_head(img_feats, batch_data_samples, rescale=False)
|
||||
|
||||
|
||||
def query_head_predict_deepstream(self, feats, batch_data_samples, rescale=False):
|
||||
with torch.no_grad():
|
||||
outs = self.forward(feats, batch_data_samples)
|
||||
predictions = self.predict_by_feat(
|
||||
*outs, batch_img_metas=batch_data_samples, rescale=rescale)
|
||||
return predictions
|
||||
|
||||
|
||||
def codetr_export(weights, config, device):
|
||||
register_all_modules()
|
||||
model_cfg = load_config(config)[0]
|
||||
model = deepcopy(model_cfg.model)
|
||||
model.pop('pretrained', None)
|
||||
for key in model['train_cfg']:
|
||||
if 'rpn_proposal' in key:
|
||||
key['rpn_proposal'] = {}
|
||||
model['test_cfg'] = [{}, {'rpn': {}, 'rcnn': {}}, {}]
|
||||
preprocess_cfg = deepcopy(model_cfg.get('preprocess_cfg', {}))
|
||||
preprocess_cfg.update(deepcopy(model_cfg.get('data_preprocessor', {})))
|
||||
model.setdefault('data_preprocessor', preprocess_cfg)
|
||||
model = MODELS.build(model)
|
||||
load_checkpoint(model, weights, map_location=device)
|
||||
model = revert_sync_batchnorm(model)
|
||||
if hasattr(model, 'backbone') and hasattr(model.backbone, 'switch_to_deploy'):
|
||||
model.backbone.switch_to_deploy()
|
||||
if hasattr(model, 'switch_to_deploy') and callable(model.switch_to_deploy):
|
||||
model.switch_to_deploy()
|
||||
model = model.to(device)
|
||||
model.eval()
|
||||
del model.data_preprocessor
|
||||
model._forward = types.MethodType(forward_deepstream, model)
|
||||
model.query_head.predict = types.MethodType(query_head_predict_deepstream, model.query_head)
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening CO-DETR model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = codetr_export(args.weights, args.config, device)
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream CO-DETR conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pth) file path (required)')
|
||||
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
if not os.path.isfile(args.config):
|
||||
raise SystemExit('Invalid config file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
main(args)
|
||||
Reference in New Issue
Block a user