yacwc
This commit is contained in:
88
train.py
88
train.py
@@ -4,49 +4,79 @@ from model import Model
|
||||
from data import iNaturalistDataset
|
||||
import torch
|
||||
import os
|
||||
import time
|
||||
import datetime as dt
|
||||
import json
|
||||
import utils
|
||||
|
||||
if not os.path.exists("models/"):
|
||||
os.mkdir("models")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
model_root = "models/" + dt.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
model_path = model_root + ".pth"
|
||||
model_info = model_root + ".json"
|
||||
|
||||
|
||||
species_list = set(["Poecile atricapillus", "Archilochus colubris", "Icterus galbula"])
|
||||
model_type = "fasterrcnn_mobilenet_v3_large_fpn"
|
||||
|
||||
if not os.path.exists('models/'):
|
||||
os.mkdirs('models')
|
||||
|
||||
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||
def run():
|
||||
val_dataset = iNaturalistDataset(validation=True, transforms = get_transform(train=True))
|
||||
train_dataset = iNaturalistDataset(train=True, transforms = get_transform(train=False))
|
||||
val_dataset = iNaturalistDataset(
|
||||
validation=True,
|
||||
species=species_list,
|
||||
)
|
||||
train_dataset = iNaturalistDataset(
|
||||
train=True,
|
||||
species=species_list,
|
||||
)
|
||||
|
||||
with open(model_info, "w") as js_p:
|
||||
json.dump(
|
||||
{"categories": train_dataset.categories, "model_type": model_type},
|
||||
js_p,
|
||||
default=str,
|
||||
indent=4,
|
||||
)
|
||||
|
||||
train_data_loader = torch.utils.data.DataLoader(
|
||||
train_dataset, batch_size=8, shuffle=True, num_workers=1, collate_fn=utils.collate_fn
|
||||
)
|
||||
val_data_loader = torch.utils.data.DataLoader(
|
||||
val_dataset, batch_size=8, shuffle=True, num_workers=1, collate_fn=utils.collate_fn
|
||||
train_dataset,
|
||||
batch_size=8,
|
||||
shuffle=True,
|
||||
num_workers=4,
|
||||
collate_fn=utils.collate_fn,
|
||||
)
|
||||
|
||||
num_classes = 5
|
||||
model = Model(num_classes)
|
||||
val_data_loader = torch.utils.data.DataLoader(
|
||||
val_dataset,
|
||||
batch_size=8,
|
||||
shuffle=True,
|
||||
num_workers=4,
|
||||
collate_fn=utils.collate_fn,
|
||||
)
|
||||
|
||||
num_classes = len(species_list) + 1
|
||||
model = Model(num_classes, model_type)
|
||||
model.to(device)
|
||||
|
||||
params = [p for p in model.parameters() if p.requires_grad]
|
||||
optimizer = torch.optim.SGD(params, lr=0.005,
|
||||
momentum=0.9, weight_decay=0.0005)
|
||||
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
|
||||
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
|
||||
step_size=3,
|
||||
gamma=0.1)
|
||||
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
|
||||
|
||||
num_epochs = 10
|
||||
for epoch in range(num_epochs):
|
||||
print(epoch)
|
||||
torch.save(model.state_dict(), 'model_weights_start_'+str(epoch)+ '.pth')
|
||||
# train for one epoch, printing every 10 iterations
|
||||
engine.train_one_epoch(model, optimizer, train_data_loader, device, epoch, print_freq=10)
|
||||
torch.save(model.state_dict(), 'model_weights_post_train_'+str(epoch)+ '.pth')
|
||||
# update the learning rate
|
||||
train_one_epoch(
|
||||
model, optimizer, train_data_loader, device, epoch, print_freq=10
|
||||
)
|
||||
lr_scheduler.step()
|
||||
torch.save(model.state_dict(), 'model_weights_post_step_'+str(epoch)+ '.pth')
|
||||
# evaluate on the test dataset
|
||||
engine.evaluate(model, val_data_loader, device=device)
|
||||
torch.save(model.state_dict(), model_path)
|
||||
evaluate(model, val_data_loader, device=device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
|
||||
Reference in New Issue
Block a user