Files
inaturalist_pytorch_model/train.py
2021-07-01 20:26:24 -04:00

83 lines
2.1 KiB
Python

# %%
from engine import train_one_epoch, evaluate
from model import Model
from data import iNaturalistDataset
import torch
import os
import datetime as dt
import json
import utils
if not os.path.exists("models/"):
os.mkdir("models")
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_root = "models/" + dt.datetime.now().strftime("%Y%m%d_%H%M%S")
model_path = model_root + ".pth"
model_info = model_root + ".json"
species_list = set(["Poecile atricapillus", "Archilochus colubris", "Icterus galbula"])
model_type = "fasterrcnn_mobilenet_v3_large_fpn"
def run():
val_dataset = iNaturalistDataset(
validation=True,
species=species_list,
)
train_dataset = iNaturalistDataset(
train=True,
species=species_list,
)
with open(model_info, "w") as js_p:
json.dump(
{"categories": train_dataset.categories, "model_type": model_type},
js_p,
default=str,
indent=4,
)
train_data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=8,
shuffle=True,
num_workers=4,
collate_fn=utils.collate_fn,
)
val_data_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=8,
shuffle=True,
num_workers=4,
collate_fn=utils.collate_fn,
)
num_classes = len(species_list) + 1
model = Model(num_classes, model_type)
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
num_epochs = 10
for epoch in range(num_epochs):
train_one_epoch(
model, optimizer, train_data_loader, device, epoch, print_freq=10
)
lr_scheduler.step()
torch.save(model.state_dict(), model_path)
evaluate(model, val_data_loader, device=device)
if __name__ == "__main__":
run()