This commit is contained in:
2021-07-12 13:08:45 -04:00
parent 3e54faeb44
commit 90edf9bd45
5 changed files with 372 additions and 0 deletions

62
flag_videos_to_keep.py Normal file
View File

@@ -0,0 +1,62 @@
import json
import shutil
import os
source_path = '/srv/ftp/hummingbird/2021'
#target_path = '/home/thebears/Videos/ftp'
target_path = '/home/thebears/ftp_links'
have_json = set()
for di, _, fns in os.walk(source_path):
for fn in fns:
if fn.endswith('.json'):
have_json.add(os.path.join(di, fn))
do_stop = False
fracs = dict()
for c_js in have_json:
hits = 0
total = 0
o = json.load(open(c_js,'r'))
for i in o:
total += 1
# if len([x for x in i['scores'] if x > 0.1]) > 0:
if len(i['boxes']) > 0:
hits += 1
fracs[c_js] = [hits, total]
if do_stop:
break
ratios = dict()
for x,y in fracs.items():
ratios[x] = y[0]/y[1]
# %%
import math
dir_created = set()
for fname, ratio in ratios.items():
cr = math.floor(ratio * 10)/10
target_dir = os.path.join(target_path, str(cr))
if not os.path.exists(target_dir) and target_dir not in dir_created:
os.mkdir(target_dir)
dir_created.add(target_dir)
else:
dir_created.add(target_dir)
source_file = fname.replace('.json','.mp4')
target_file = os.path.join(target_dir, os.path.basename(source_file))
os.symlink(source_file, target_file)

View File

@@ -0,0 +1,23 @@
{
"categories": [
{
"supercategory": "Aves",
"id": 206,
"name": "Archilochus colubris",
"new_id": 1
},
{
"supercategory": "Aves",
"id": 4493,
"name": "Icterus galbula",
"new_id": 2
},
{
"supercategory": "Aves",
"id": 403,
"name": "Poecile atricapillus",
"new_id": 3
}
],
"model_type": "fasterrcnn_mobilenet_v3_large_fpn"
}

35
score_in_directory.py Normal file
View File

@@ -0,0 +1,35 @@
import os
import random
from multiprocessing import Pool
import sys
sys.path.append('/home/thebears/Seafile/Designs/ML')
from score_video import score_video
rtpath = '/srv/ftp/hummingbird/2021'
cmd = '/usr/bin/python3 /home/thebears/Seafile/Designs/ML/inaturalist_models/score_video.py {mp4name}'
have_json = set()
fnames = set()
for di,_, fns in os.walk(rtpath):
for fn in fns:
if fn.endswith('.mp4'):
fnames.add(os.path.join(di,fn))
elif fn.endswith('.json'):
have_json.add(os.path.join(di,fn.replace('.json','.mp4')))
files_to_score = list(fnames - have_json)
random.shuffle(files_to_score)
def try_catch_chunk(vids):
try:
score_video(vids)
except Exception as e:
print(e)
lst = files_to_score
n = 25
chunks = [lst[i:i + n] for i in range(0, len(lst), n)]
# %%
if __name__ == '__main__':
with Pool(4) as p:
output = p.map(score_video,chunks)

129
score_video.py Normal file
View File

@@ -0,0 +1,129 @@
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from collections import defaultdict as ddict
import json
import torch
from torchvision import datasets, transforms as T
import numpy as np
import os
import sys
sys.path.append('/home/thebears/Seafile/Designs/ML')
import json
import cv2
import random
from model import Model
import socket
#vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210601055009.mp4'
def score_video(vid_in_list):
no_cuda = socket.gethostname() == 'tree'
device='cpu'
model_rt_path = '/home/thebears/Seafile/Designs/ML/inaturalist_models/models/'#0210701_202822.json
newest_model = os.path.join(model_rt_path, max(os.listdir(model_rt_path)).replace('.pth',''))
with open(newest_model + '.json','r') as nmj:
model_json = json.load(nmj)
cats = model_json['categories']
cats.sort(key=lambda x: x['new_id'])
num_cat = len(cats) + 1
model_type = model_json['model_type']
model = Model(num_cat, model_type)
labels = [x['name'] for x in cats]
model.load_state_dict(
torch.load(newest_model + '.pth', map_location = torch.device(device))
)
model.eval()
if isinstance(vid_in_list, str):
vid_in_list = [vid_in_list]
for idx_vid, vid_in in enumerate(vid_in_list):
vid_path = os.path.abspath(vid_in)
scores_json = vid_path.rsplit('.')[0]+'.json'
print(os.getpid(),':',str(idx_vid),'/',str(len(vid_in_list)),vid_path)
if os.path.exists(scores_json):
print(f"JSON {scores_json} already exists")
exit()
vid_dir = os.path.dirname(vid_path)
os.system(f'sudo chmod 777 {vid_dir}')
cap = cv2.VideoCapture(vid_path)
from torchvision.utils import draw_bounding_boxes
import torch as t
import matplotlib.pyplot as plt
import matplotlib
cap = cv2.VideoCapture(vid_path)
frame_num = 0
results = list()
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
for frame_num in range(0, total_frames, 30):
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
img = cap.read()[1]
image = img[:, :, ::-1].copy()
o = T.ToTensor()(image)
img = o[None, :, :, :]
with torch.no_grad():
ou = model(img)
if len(ou) > 0:
ofscore = ou[0]
for k in ofscore:
ofscore[k] = ofscore[k].numpy().tolist()
ofscore['names'] = [labels[x-1] for x in ofscore['labels']]
ofscore['frame_number'] = frame_num
results.append(ofscore)
with open(scores_json,'w') as jj:
json.dump(results, jj, indent=4)
if __name__ == '__main__':
score_video(sys.argv[1])
# %%
# vid_path = '/srv/ftp/hummingbird/2021/06/27/Hummingbird_01_20210627101803.mp4'
# import time
# import cv2
# video = cv2.VideoCapture(vid_path)
# total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
# # %%
# st = time.time()
# while True:
# ret, read = video.read()
# if not ret:
# break
# et = time.time()
# print(et-st)
# st = time.time()
# frs = list()
# for i in range(0,total_frames, 150):
# video.set(cv2.CAP_PROP_POS_FRAMES, i)
# ret, frame = video.read()
# frs.append(frame)
# et = time.time()
# print(et-st)

123
test.py Normal file
View File

@@ -0,0 +1,123 @@
# %%
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from collections import defaultdict as ddict
import json
import torch
from torchvision import datasets, transforms as T
import numpy as np
import os
import sys
import json
import cv2
import random
from model import Model
from torchvision.utils import draw_bounding_boxes
import torch as t
import matplotlib.pyplot as plt
device = 'cpu'
model_rt_path = '/home/thebears/Seafile/Designs/ML/inaturalist_models/models/'#0210701_202822.json
newest_model = os.path.join(model_rt_path, max(os.listdir(model_rt_path)).replace('.pth',''))
with open(newest_model + '.json','r') as nmj:
model_json = json.load(nmj)
cats = model_json['categories']
cats.sort(key=lambda x: x['new_id'])
num_cat = len(cats) + 1
model_type = model_json['model_type']
model = Model(num_cat, model_type)
labels = [x['name'] for x in cats]
model.load_state_dict(
torch.load(newest_model + '.pth', map_location=torch.device(device))
)
model.eval()
model.to(device)
#rtdir = '/home/thebears/data/hummingbird_imagenet/hummingbird'
#ff = [x for x in os.listdir(rtdir) if x.endswith('.jpg')]
# img = os.path.join(rtdir, random.choice(ff))
# image = cv2.imread(img)[:, :, ::-1].copy()
# o = T.ToTensor()(image).to(device)
# img = o[None, :, :, :]
# ou = model(img)
#oimage = t.tensor(image, dtype=t.uint8).permute([2, 0, 1])
#matplotlib.use('Qt5Agg')
#vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210601055009.mp4'
#vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210617113038.mp4'
print('model loaded')
# %%
vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210617113038.mp4'
cap = cv2.VideoCapture(vid_path)
imgs = list()
#movie = cv2.VideoWriter('/home/thebears/Seafile/Designs/ML/inaturalist_models/output.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 10, (2560,1920))
frame_num = 0
# %%
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# if frame_num % 10 == 1:
img = cap.read()[1]
image = img[:, :, ::-1].copy()
o = T.ToTensor()(image).to(device)
img = o[None, :, :, :]
ou = model(img)
idx = ou[0]['labels']
label_names = [labels[x-1] for x in idx]
scores = ou[0]['scores']
oimage = t.tensor(255*img.squeeze(), dtype=t.uint8)
boxes = ou[0]['boxes']
if boxes.shape[0] > 1:
boxes = boxes[[1],:]
label_names = [label_names[0]]
if boxes.shape[0] > 0:
label_names[0] += ' {0:0.2f}'.format(scores[0])
ox = draw_bounding_boxes(oimage, boxes, width=5, labels = label_names,
font='Victor Mono SemiBold Nerd Font Complete Mono Windows Compatible',font_size=50, fill = False, colors = (255, 255, 100, 100))
fname = '/home/thebears/Seafile/Designs/ML/inaturalist_models/frames/frame_{0:06g}.jpg'.format(frame_num)
from PIL import Image
im = Image.fromarray(np.uint8(ox.permute([1,2,0]).numpy()))
im.save(fname)
# plt.imshow(ox.permute([1, 2, 0]))
frame_num += 1
print(frame_num)
# %%