f
This commit is contained in:
62
flag_videos_to_keep.py
Normal file
62
flag_videos_to_keep.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import json
|
||||
import shutil
|
||||
import os
|
||||
source_path = '/srv/ftp/hummingbird/2021'
|
||||
#target_path = '/home/thebears/Videos/ftp'
|
||||
target_path = '/home/thebears/ftp_links'
|
||||
|
||||
|
||||
|
||||
have_json = set()
|
||||
for di, _, fns in os.walk(source_path):
|
||||
for fn in fns:
|
||||
if fn.endswith('.json'):
|
||||
have_json.add(os.path.join(di, fn))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
do_stop = False
|
||||
fracs = dict()
|
||||
|
||||
for c_js in have_json:
|
||||
hits = 0
|
||||
total = 0
|
||||
o = json.load(open(c_js,'r'))
|
||||
for i in o:
|
||||
total += 1
|
||||
# if len([x for x in i['scores'] if x > 0.1]) > 0:
|
||||
if len(i['boxes']) > 0:
|
||||
hits += 1
|
||||
|
||||
fracs[c_js] = [hits, total]
|
||||
|
||||
|
||||
if do_stop:
|
||||
break
|
||||
|
||||
|
||||
|
||||
ratios = dict()
|
||||
for x,y in fracs.items():
|
||||
ratios[x] = y[0]/y[1]
|
||||
# %%
|
||||
import math
|
||||
dir_created = set()
|
||||
for fname, ratio in ratios.items():
|
||||
cr = math.floor(ratio * 10)/10
|
||||
target_dir = os.path.join(target_path, str(cr))
|
||||
if not os.path.exists(target_dir) and target_dir not in dir_created:
|
||||
os.mkdir(target_dir)
|
||||
dir_created.add(target_dir)
|
||||
else:
|
||||
dir_created.add(target_dir)
|
||||
|
||||
|
||||
|
||||
source_file = fname.replace('.json','.mp4')
|
||||
target_file = os.path.join(target_dir, os.path.basename(source_file))
|
||||
|
||||
os.symlink(source_file, target_file)
|
||||
23
models/20210701_202822.json
Normal file
23
models/20210701_202822.json
Normal file
@@ -0,0 +1,23 @@
|
||||
{
|
||||
"categories": [
|
||||
{
|
||||
"supercategory": "Aves",
|
||||
"id": 206,
|
||||
"name": "Archilochus colubris",
|
||||
"new_id": 1
|
||||
},
|
||||
{
|
||||
"supercategory": "Aves",
|
||||
"id": 4493,
|
||||
"name": "Icterus galbula",
|
||||
"new_id": 2
|
||||
},
|
||||
{
|
||||
"supercategory": "Aves",
|
||||
"id": 403,
|
||||
"name": "Poecile atricapillus",
|
||||
"new_id": 3
|
||||
}
|
||||
],
|
||||
"model_type": "fasterrcnn_mobilenet_v3_large_fpn"
|
||||
}
|
||||
35
score_in_directory.py
Normal file
35
score_in_directory.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import os
|
||||
import random
|
||||
from multiprocessing import Pool
|
||||
import sys
|
||||
sys.path.append('/home/thebears/Seafile/Designs/ML')
|
||||
from score_video import score_video
|
||||
|
||||
rtpath = '/srv/ftp/hummingbird/2021'
|
||||
cmd = '/usr/bin/python3 /home/thebears/Seafile/Designs/ML/inaturalist_models/score_video.py {mp4name}'
|
||||
have_json = set()
|
||||
fnames = set()
|
||||
for di,_, fns in os.walk(rtpath):
|
||||
for fn in fns:
|
||||
if fn.endswith('.mp4'):
|
||||
fnames.add(os.path.join(di,fn))
|
||||
elif fn.endswith('.json'):
|
||||
have_json.add(os.path.join(di,fn.replace('.json','.mp4')))
|
||||
|
||||
files_to_score = list(fnames - have_json)
|
||||
random.shuffle(files_to_score)
|
||||
|
||||
|
||||
def try_catch_chunk(vids):
|
||||
try:
|
||||
score_video(vids)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
lst = files_to_score
|
||||
n = 25
|
||||
chunks = [lst[i:i + n] for i in range(0, len(lst), n)]
|
||||
# %%
|
||||
if __name__ == '__main__':
|
||||
with Pool(4) as p:
|
||||
output = p.map(score_video,chunks)
|
||||
129
score_video.py
Normal file
129
score_video.py
Normal file
@@ -0,0 +1,129 @@
|
||||
|
||||
|
||||
import torchvision
|
||||
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
||||
from collections import defaultdict as ddict
|
||||
import json
|
||||
import torch
|
||||
from torchvision import datasets, transforms as T
|
||||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
sys.path.append('/home/thebears/Seafile/Designs/ML')
|
||||
import json
|
||||
import cv2
|
||||
import random
|
||||
|
||||
from model import Model
|
||||
import socket
|
||||
|
||||
|
||||
|
||||
#vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210601055009.mp4'
|
||||
|
||||
def score_video(vid_in_list):
|
||||
|
||||
|
||||
no_cuda = socket.gethostname() == 'tree'
|
||||
device='cpu'
|
||||
model_rt_path = '/home/thebears/Seafile/Designs/ML/inaturalist_models/models/'#0210701_202822.json
|
||||
newest_model = os.path.join(model_rt_path, max(os.listdir(model_rt_path)).replace('.pth',''))
|
||||
with open(newest_model + '.json','r') as nmj:
|
||||
model_json = json.load(nmj)
|
||||
|
||||
cats = model_json['categories']
|
||||
cats.sort(key=lambda x: x['new_id'])
|
||||
num_cat = len(cats) + 1
|
||||
model_type = model_json['model_type']
|
||||
model = Model(num_cat, model_type)
|
||||
labels = [x['name'] for x in cats]
|
||||
model.load_state_dict(
|
||||
torch.load(newest_model + '.pth', map_location = torch.device(device))
|
||||
)
|
||||
model.eval()
|
||||
|
||||
if isinstance(vid_in_list, str):
|
||||
vid_in_list = [vid_in_list]
|
||||
|
||||
for idx_vid, vid_in in enumerate(vid_in_list):
|
||||
vid_path = os.path.abspath(vid_in)
|
||||
scores_json = vid_path.rsplit('.')[0]+'.json'
|
||||
print(os.getpid(),':',str(idx_vid),'/',str(len(vid_in_list)),vid_path)
|
||||
if os.path.exists(scores_json):
|
||||
print(f"JSON {scores_json} already exists")
|
||||
exit()
|
||||
vid_dir = os.path.dirname(vid_path)
|
||||
os.system(f'sudo chmod 777 {vid_dir}')
|
||||
|
||||
|
||||
|
||||
cap = cv2.VideoCapture(vid_path)
|
||||
|
||||
from torchvision.utils import draw_bounding_boxes
|
||||
import torch as t
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
cap = cv2.VideoCapture(vid_path)
|
||||
frame_num = 0
|
||||
|
||||
results = list()
|
||||
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
|
||||
|
||||
for frame_num in range(0, total_frames, 30):
|
||||
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
|
||||
img = cap.read()[1]
|
||||
image = img[:, :, ::-1].copy()
|
||||
o = T.ToTensor()(image)
|
||||
img = o[None, :, :, :]
|
||||
|
||||
with torch.no_grad():
|
||||
ou = model(img)
|
||||
|
||||
if len(ou) > 0:
|
||||
ofscore = ou[0]
|
||||
|
||||
for k in ofscore:
|
||||
ofscore[k] = ofscore[k].numpy().tolist()
|
||||
|
||||
ofscore['names'] = [labels[x-1] for x in ofscore['labels']]
|
||||
ofscore['frame_number'] = frame_num
|
||||
|
||||
results.append(ofscore)
|
||||
|
||||
with open(scores_json,'w') as jj:
|
||||
json.dump(results, jj, indent=4)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
score_video(sys.argv[1])
|
||||
|
||||
|
||||
# %%
|
||||
# vid_path = '/srv/ftp/hummingbird/2021/06/27/Hummingbird_01_20210627101803.mp4'
|
||||
# import time
|
||||
# import cv2
|
||||
# video = cv2.VideoCapture(vid_path)
|
||||
|
||||
# total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||
# # %%
|
||||
# st = time.time()
|
||||
|
||||
# while True:
|
||||
# ret, read = video.read()
|
||||
# if not ret:
|
||||
# break
|
||||
|
||||
# et = time.time()
|
||||
|
||||
# print(et-st)
|
||||
|
||||
# st = time.time()
|
||||
# frs = list()
|
||||
# for i in range(0,total_frames, 150):
|
||||
# video.set(cv2.CAP_PROP_POS_FRAMES, i)
|
||||
# ret, frame = video.read()
|
||||
# frs.append(frame)
|
||||
# et = time.time()
|
||||
# print(et-st)
|
||||
123
test.py
Normal file
123
test.py
Normal file
@@ -0,0 +1,123 @@
|
||||
# %%
|
||||
import torchvision
|
||||
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
||||
from collections import defaultdict as ddict
|
||||
import json
|
||||
import torch
|
||||
from torchvision import datasets, transforms as T
|
||||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
import cv2
|
||||
import random
|
||||
from model import Model
|
||||
from torchvision.utils import draw_bounding_boxes
|
||||
import torch as t
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
device = 'cpu'
|
||||
|
||||
model_rt_path = '/home/thebears/Seafile/Designs/ML/inaturalist_models/models/'#0210701_202822.json
|
||||
newest_model = os.path.join(model_rt_path, max(os.listdir(model_rt_path)).replace('.pth',''))
|
||||
with open(newest_model + '.json','r') as nmj:
|
||||
model_json = json.load(nmj)
|
||||
|
||||
cats = model_json['categories']
|
||||
cats.sort(key=lambda x: x['new_id'])
|
||||
num_cat = len(cats) + 1
|
||||
model_type = model_json['model_type']
|
||||
model = Model(num_cat, model_type)
|
||||
labels = [x['name'] for x in cats]
|
||||
model.load_state_dict(
|
||||
torch.load(newest_model + '.pth', map_location=torch.device(device))
|
||||
)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#rtdir = '/home/thebears/data/hummingbird_imagenet/hummingbird'
|
||||
|
||||
#ff = [x for x in os.listdir(rtdir) if x.endswith('.jpg')]
|
||||
|
||||
# img = os.path.join(rtdir, random.choice(ff))
|
||||
# image = cv2.imread(img)[:, :, ::-1].copy()
|
||||
# o = T.ToTensor()(image).to(device)
|
||||
# img = o[None, :, :, :]
|
||||
|
||||
# ou = model(img)
|
||||
|
||||
#oimage = t.tensor(image, dtype=t.uint8).permute([2, 0, 1])
|
||||
|
||||
#matplotlib.use('Qt5Agg')
|
||||
|
||||
|
||||
|
||||
|
||||
#vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210601055009.mp4'
|
||||
#vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210617113038.mp4'
|
||||
|
||||
print('model loaded')
|
||||
# %%
|
||||
vid_path = '/home/thebears/data/hummingbird_videos/Hummingbird_01_20210617113038.mp4'
|
||||
cap = cv2.VideoCapture(vid_path)
|
||||
imgs = list()
|
||||
|
||||
#movie = cv2.VideoWriter('/home/thebears/Seafile/Designs/ML/inaturalist_models/output.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 10, (2560,1920))
|
||||
|
||||
frame_num = 0
|
||||
# %%
|
||||
while cap.isOpened():
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
# if frame_num % 10 == 1:
|
||||
img = cap.read()[1]
|
||||
image = img[:, :, ::-1].copy()
|
||||
o = T.ToTensor()(image).to(device)
|
||||
img = o[None, :, :, :]
|
||||
|
||||
ou = model(img)
|
||||
|
||||
idx = ou[0]['labels']
|
||||
label_names = [labels[x-1] for x in idx]
|
||||
|
||||
|
||||
scores = ou[0]['scores']
|
||||
oimage = t.tensor(255*img.squeeze(), dtype=t.uint8)
|
||||
boxes = ou[0]['boxes']
|
||||
|
||||
if boxes.shape[0] > 1:
|
||||
boxes = boxes[[1],:]
|
||||
label_names = [label_names[0]]
|
||||
|
||||
if boxes.shape[0] > 0:
|
||||
label_names[0] += ' {0:0.2f}'.format(scores[0])
|
||||
|
||||
|
||||
ox = draw_bounding_boxes(oimage, boxes, width=5, labels = label_names,
|
||||
font='Victor Mono SemiBold Nerd Font Complete Mono Windows Compatible',font_size=50, fill = False, colors = (255, 255, 100, 100))
|
||||
fname = '/home/thebears/Seafile/Designs/ML/inaturalist_models/frames/frame_{0:06g}.jpg'.format(frame_num)
|
||||
from PIL import Image
|
||||
im = Image.fromarray(np.uint8(ox.permute([1,2,0]).numpy()))
|
||||
im.save(fname)
|
||||
|
||||
# plt.imshow(ox.permute([1, 2, 0]))
|
||||
frame_num += 1
|
||||
print(frame_num)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user