2.3 KiB
YOLOR usage
NOTE: You need to use the main branch of the YOLOR repo to convert the model.
NOTE: The cfg file is required.
- Convert model
- Compile the lib
- Edit the config_infer_primary_yolor file
- Edit the deepstream_app_config file
- Testing the model
Convert model
1. Download the YOLOR repo and install the requirements
git clone https://github.com/WongKinYiu/yolor.git
cd yolor
pip3 install -r requirements.txt
NOTE: It is recommended to use Python virtualenv.
2. Copy conversor
Copy the gen_wts_yolor.py file from DeepStream-Yolo/utils directory to the yolor folder.
3. Download the model
Download the pt file from YOLOR repo.
NOTE: You can use your custom model, but it is important to keep the YOLO model reference (yolor_) in you cfg and weights/wts filenames to generate the engine correctly.
4. Convert model
Generate the cfg and wts files (example for YOLOR-CSP)
python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
5. Copy generated files
Copy the generated cfg and wts files to the DeepStream-Yolo folder
Compile the lib
Open the DeepStream-Yolo folder and compile the lib
-
DeepStream 6.1.1 on x86 platform
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.1.1 / 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.0.1 / 6.0 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_yolor file
Edit the config_infer_primary_yolor.txt file according to your model (example for YOLOR-CSP)
[property]
...
custom-network-config=yolor_csp.cfg
model-file=yolor_csp.wts
...
Edit the deepstream_app_config file
...
[primary-gie]
...
config-file=config_infer_primary_yolor.txt
Testing the model
deepstream-app -c deepstream_app_config.txt