Files
deepstream_yolo/docs/YOLONAS.md
2023-05-21 17:11:39 -03:00

181 lines
3.2 KiB
Markdown

# YOLO-NAS usage
**NOTE**: The yaml file is not required.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yolonas file](#edit-the-config_infer_primary_yolonas-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLO-NAS repo and install the requirements
```
git clone https://github.com/Deci-AI/super-gradients.git
cd super-gradients
pip3 install -r requirements.txt
python3 setup.py install
pip3 install onnx onnxsim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_yolonas.py` file from `DeepStream-Yolo/utils` directory to the `super-gradients` folder.
#### 3. Download the model
Download the `pth` file from [YOLO-NAS](https://sghub.deci.ai/) releases (example for YOLO-NAS S)
```
wget https://sghub.deci.ai/models/yolo_nas_s_coco.pth
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for YOLO-NAS S)
```
python3 export_yolonas.py -m yolo_nas_s -w yolo_nas_s_coco.pth --simplify
```
**NOTE**: Model names
```
-m yolo_nas_s
```
or
```
-m yolo_nas_m
```
or
```
-m yolo_nas_l
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
#### 5. Copy generated files
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.2 on x86 platform
```
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1.1 on x86 platform
```
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yolonas file
Edit the `config_infer_primary_yolonas.txt` file according to your model (example for YOLO-NAS S with 80 classes)
```
[property]
...
onnx-file=yolo_nas_s_coco.onnx
model-engine-file=yolo_nas_s_coco.onnx_b1_gpu0_fp32.engine
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYoloE
...
```
**NOTE**: The **YOLO-NAS** resizes the input with left/top padding. To get better accuracy, use
```
maintain-aspect-ratio=1
symmetric-padding=0
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_yolonas.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.