Files
deepstream_yolo/docs/YOLONAS.md
2024-11-07 11:25:17 -03:00

237 lines
4.2 KiB
Markdown

# YOLO-NAS usage
**NOTE**: The yaml file is not required.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yolonas file](#edit-the-config_infer_primary_yolonas-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLO-NAS repo and install the requirements
```
git clone https://github.com/Deci-AI/super-gradients.git
cd super-gradients
pip3 install -r requirements.txt
python3 setup.py install
pip3 install onnx onnxslim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_yolonas.py` file from `DeepStream-Yolo/utils` directory to the `super-gradients` folder.
#### 3. Download the model
Download the `pth` file from [YOLO-NAS](https://sghub.deci.ai/) releases (example for YOLO-NAS S)
```
wget https://sghub.deci.ai/models/yolo_nas_s_coco.pth
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for YOLO-NAS S)
```
python3 export_yolonas.py -m yolo_nas_s -w yolo_nas_s_coco.pth --dynamic
```
**NOTE**: Model names
```
-m yolo_nas_s
```
or
```
-m yolo_nas_m
```
or
```
-m yolo_nas_l
```
**NOTE**: Number of classes (example for 80 classes)
```
-n 80
```
or
```
--classes 80
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
```
--simplify
```
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
```
--dynamic
```
**NOTE**: To use static batch-size (example for batch-size = 4)
```
--batch 4
```
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 14.
```
--opset 12
```
#### 5. Copy generated file
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
##
### Compile the lib
1. Open the `DeepStream-Yolo` folder and compile the lib
2. Set the `CUDA_VER` according to your DeepStream version
```
export CUDA_VER=XY.Z
```
* x86 platform
```
DeepStream 7.1 = 12.6
DeepStream 7.0 / 6.4 = 12.2
DeepStream 6.3 = 12.1
DeepStream 6.2 = 11.8
DeepStream 6.1.1 = 11.7
DeepStream 6.1 = 11.6
DeepStream 6.0.1 / 6.0 = 11.4
DeepStream 5.1 = 11.1
```
* Jetson platform
```
DeepStream 7.1 = 12.6
DeepStream 7.0 / 6.4 = 12.2
DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
```
3. Make the lib
```
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yolonas file
Edit the `config_infer_primary_yolonas.txt` file according to your model (example for YOLO-NAS S with 80 classes)
```
[property]
...
onnx-file=yolo_nas_s_coco.pth.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
**NOTE**: If you are using a **custom** model, you should edit the `config_infer_primary_yolonas_custom.txt` file.
**NOTE**: The **YOLO-NAS** resizes the input with left/top padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
...
```
**NOTE**: The **pre-trained YOLO-NAS** uses zero mean normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
[property]
...
net-scale-factor=0.0039215697906911373
...
```
**NOTE**: The **custom YOLO-NAS** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
[property]
...
net-scale-factor=1
...
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_yolonas.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.