280 lines
4.7 KiB
Markdown
280 lines
4.7 KiB
Markdown
# How to use custom models in DeepStream
|
|
|
|
* [Requirements](#requirements)
|
|
* [Editing files](#editing-files)
|
|
* [Compile lib](#compile-lib)
|
|
* [Understanding and editing deepstream_app_config](#understanding-and-editing-deepstream_app_config)
|
|
* [Understanding and editing config_infer_primary](#understanding-and-editing-config_infer_primary)
|
|
* [Testing model](#testing-model)
|
|
|
|
##
|
|
|
|
### Requirements
|
|
|
|
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
|
|
* Pre-treined YOLO model in Darknet or PyTorch
|
|
|
|
##
|
|
|
|
### Editing files
|
|
|
|
#### 1. Download the repo
|
|
|
|
```
|
|
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
|
|
cd DeepStream-Yolo
|
|
```
|
|
|
|
#### 2. Copy your labels file to DeepStream-Yolo directory and remane it to labels.txt
|
|
|
|
#### 3. Copy the yolo.cfg and yolo.weights/yolo.wts files to DeepStream-Yolo directory
|
|
|
|
**NOTE**: It's important to keep the YOLO model reference (yolov4_, yolov5_, yolor_, etc) in you cfg and weights/wts file to generate the engine correctly.
|
|
|
|
##
|
|
|
|
### Compile lib
|
|
|
|
* x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* Jetson platform
|
|
|
|
```
|
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
##
|
|
|
|
### Understanding and editing deepstream_app_config
|
|
|
|
To understand and edit deepstream_app_config.txt file, read the [DeepStream Reference Application - Configuration Groups](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_ref_app_deepstream.html#configuration-groups)
|
|
|
|
##
|
|
|
|
#### tiled-display
|
|
|
|
```
|
|
[tiled-display]
|
|
enable=1
|
|
# If you have 1 stream use 1/1 (rows/columns), if you have 4 streams use 2/2 or 4/1 or 1/4 (rows/columns)
|
|
rows=1
|
|
columns=1
|
|
# Resolution of tiled display
|
|
width=1280
|
|
height=720
|
|
gpu-id=0
|
|
nvbuf-memory-type=0
|
|
```
|
|
|
|
##
|
|
|
|
#### source
|
|
|
|
* Example for 1 source:
|
|
|
|
```
|
|
[source0]
|
|
enable=1
|
|
# 1=Camera (V4L2), 2=URI, 3=MultiURI, 4=RTSP, 5=Camera (CSI; Jetson only)
|
|
type=3
|
|
# Stream URL
|
|
uri=rtsp://192.168.1.2/Streaming/Channels/101/httppreview
|
|
# Number of sources copy (if > 1, edit rows/columns in tiled-display section; use type=3 for more than 1 source)
|
|
num-sources=1
|
|
gpu-id=0
|
|
cudadec-memtype=0
|
|
```
|
|
|
|
* Example for 1 duplcated source:
|
|
|
|
```
|
|
[source0]
|
|
enable=1
|
|
type=3
|
|
uri=rtsp://192.168.1.2/Streaming/Channels/101/
|
|
num-sources=2
|
|
gpu-id=0
|
|
cudadec-memtype=0
|
|
```
|
|
|
|
* Example for 2 sources:
|
|
|
|
```
|
|
[source0]
|
|
enable=1
|
|
type=3
|
|
uri=rtsp://192.168.1.2/Streaming/Channels/101/
|
|
num-sources=1
|
|
gpu-id=0
|
|
cudadec-memtype=0
|
|
|
|
[source1]
|
|
enable=1
|
|
type=3
|
|
uri=rtsp://192.168.1.3/Streaming/Channels/101/
|
|
num-sources=1
|
|
gpu-id=0
|
|
cudadec-memtype=0
|
|
```
|
|
|
|
##
|
|
|
|
#### sink
|
|
|
|
```
|
|
[sink0]
|
|
enable=1
|
|
# 1=Fakesink, 2=EGL (nveglglessink), 3=Filesink, 4=RTSP, 5=Overlay (Jetson only)
|
|
type=2
|
|
# Indicates how fast the stream is to be rendered (0=As fast as possible, 1=Synchronously)
|
|
sync=0
|
|
gpu-id=0
|
|
nvbuf-memory-type=0
|
|
```
|
|
|
|
##
|
|
|
|
#### streammux
|
|
|
|
```
|
|
[streammux]
|
|
gpu-id=0
|
|
# Boolean property to inform muxer that sources are live
|
|
live-source=1
|
|
batch-size=1
|
|
batched-push-timeout=40000
|
|
# Resolution of streammux
|
|
width=1920
|
|
height=1080
|
|
enable-padding=0
|
|
nvbuf-memory-type=0
|
|
```
|
|
|
|
##
|
|
|
|
#### primary-gie
|
|
|
|
```
|
|
[primary-gie]
|
|
enable=1
|
|
gpu-id=0
|
|
gie-unique-id=1
|
|
nvbuf-memory-type=0
|
|
config-file=config_infer_primary.txt
|
|
```
|
|
|
|
**NOTE**: Choose the correct config_infer_primary based on your YOLO model.
|
|
|
|
##
|
|
|
|
### Understanding and editing config_infer_primary
|
|
|
|
To understand and edit config_infer_primary.txt file, read the [DeepStream Plugin Guide - Gst-nvinfer File Configuration Specifications](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html#gst-nvinfer-file-configuration-specifications)
|
|
|
|
##
|
|
|
|
#### model-color-format
|
|
|
|
```
|
|
# 0=RGB, 1=BGR, 2=GRAYSCALE
|
|
model-color-format=0
|
|
```
|
|
|
|
**NOTE**: Set it accoding to number of channels in yolo.cfg file (1=GRAYSCALE, 3=RGB)
|
|
|
|
##
|
|
|
|
#### custom-network-config
|
|
|
|
* Example for custom YOLOv4 model
|
|
|
|
```
|
|
custom-network-config=yolov4_custom.cfg
|
|
```
|
|
|
|
##
|
|
|
|
#### model-file
|
|
|
|
* Example for custom YOLOv4 model
|
|
|
|
```
|
|
model-file=yolov4_custom.weights
|
|
```
|
|
|
|
##
|
|
|
|
#### model-engine-file
|
|
|
|
* Example for batch-size=1 and network-mode=2
|
|
|
|
```
|
|
model-engine-file=model_b1_gpu0_fp16.engine
|
|
```
|
|
|
|
* Example for batch-size=1 and network-mode=1
|
|
|
|
```
|
|
model-engine-file=model_b1_gpu0_int8.engine
|
|
```
|
|
|
|
* Example for batch-size=1 and network-mode=0
|
|
|
|
```
|
|
model-engine-file=model_b1_gpu0_fp32.engine
|
|
```
|
|
|
|
* Example for batch-size=2 and network-mode=0
|
|
|
|
```
|
|
model-engine-file=model_b2_gpu0_fp32.engine
|
|
```
|
|
|
|
##
|
|
|
|
#### batch-size
|
|
|
|
```
|
|
batch-size=1
|
|
```
|
|
|
|
##
|
|
|
|
#### network-mode
|
|
|
|
```
|
|
# 0=FP32, 1=INT8, 2=FP16
|
|
network-mode=0
|
|
```
|
|
|
|
##
|
|
|
|
#### num-detected-classes
|
|
|
|
```
|
|
num-detected-classes=80
|
|
```
|
|
|
|
**NOTE**: Set it according to number of classes in yolo.cfg file
|
|
|
|
##
|
|
|
|
#### interval
|
|
|
|
```
|
|
# Number of consecutive batches to be skipped
|
|
interval=0
|
|
```
|
|
|
|
##
|
|
|
|
### Testing model
|
|
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|