Files
deepstream_yolo/utils/export_rtdetr_pytorch.py
2024-11-07 11:25:17 -03:00

113 lines
4.0 KiB
Python
Executable File

import os
import onnx
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.core import YAMLConfig
class DeepStreamOutput(nn.Module):
def __init__(self, img_size, use_focal_loss):
super().__init__()
self.img_size = img_size
self.use_focal_loss = use_focal_loss
def forward(self, x):
boxes = x['pred_boxes']
convert_matrix = torch.tensor(
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
)
boxes @= convert_matrix
boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
scores = F.sigmoid(x['pred_logits']) if self.use_focal_loss else F.softmax(x['pred_logits'])[:, :, :-1]
scores, labels = torch.max(scores, dim=-1, keepdim=True)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def rtdetr_pytorch_export(weights, cfg_file, device):
cfg = YAMLConfig(cfg_file, resume=weights)
checkpoint = torch.load(weights, map_location=device)
if 'ema' in checkpoint:
state = checkpoint['ema']['module']
else:
state = checkpoint['model']
cfg.model.load_state_dict(state)
return cfg.model.deploy(), cfg.postprocessor.use_focal_loss
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print(f'\nStarting: {args.weights}')
print('Opening RT-DETR PyTorch model')
device = torch.device('cpu')
model, use_focal_loss = rtdetr_pytorch_export(args.weights, args.config, device)
img_size = args.size * 2 if len(args.size) == 1 else args.size
model = nn.Sequential(model, DeepStreamOutput(img_size, use_focal_loss))
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying the ONNX model')
import onnxslim
model_onnx = onnx.load(onnx_output_file)
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream RT-DETR PyTorch conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
parser.add_argument('-c', '--config', required=True, help='Input YAML (.yml) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.config):
raise SystemExit('Invalid config file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
main(args)