import os import onnx import torch import torch.nn as nn import torch.nn.functional as F from src.core import YAMLConfig class DeepStreamOutput(nn.Module): def __init__(self, img_size, use_focal_loss): super().__init__() self.img_size = img_size self.use_focal_loss = use_focal_loss def forward(self, x): boxes = x['pred_boxes'] convert_matrix = torch.tensor( [[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device ) boxes @= convert_matrix boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1) scores = F.sigmoid(x['pred_logits']) if self.use_focal_loss else F.softmax(x['pred_logits'])[:, :, :-1] scores, labels = torch.max(scores, dim=-1, keepdim=True) return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1) def rtdetr_pytorch_export(weights, cfg_file, device): cfg = YAMLConfig(cfg_file, resume=weights) checkpoint = torch.load(weights, map_location=device) if 'ema' in checkpoint: state = checkpoint['ema']['module'] else: state = checkpoint['model'] cfg.model.load_state_dict(state) return cfg.model.deploy(), cfg.postprocessor.use_focal_loss def suppress_warnings(): import warnings warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=ResourceWarning) def main(args): suppress_warnings() print(f'\nStarting: {args.weights}') print('Opening RT-DETR PyTorch model') device = torch.device('cpu') model, use_focal_loss = rtdetr_pytorch_export(args.weights, args.config, device) img_size = args.size * 2 if len(args.size) == 1 else args.size model = nn.Sequential(model, DeepStreamOutput(img_size, use_focal_loss)) onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = f'{args.weights}.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'output': { 0: 'batch' } } print('Exporting the model to ONNX') torch.onnx.export( model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None ) if args.simplify: print('Simplifying the ONNX model') import onnxslim model_onnx = onnx.load(onnx_output_file) model_onnx = onnxslim.slim(model_onnx) onnx.save(model_onnx, onnx_output_file) print(f'Done: {onnx_output_file}\n') def parse_args(): import argparse parser = argparse.ArgumentParser(description='DeepStream RT-DETR PyTorch conversion') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)') parser.add_argument('-c', '--config', required=True, help='Input YAML (.yml) file path (required)') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--opset', type=int, default=16, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Static batch-size') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if not os.path.isfile(args.config): raise SystemExit('Invalid config file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time') return args if __name__ == '__main__': args = parse_args() main(args)