Files
deepstream_yolo/docs/RTMDet.md
2024-11-07 11:25:17 -03:00

210 lines
4.3 KiB
Markdown

# RTMDet (MMYOLO) usage
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_rtmdet file](#edit-the-config_infer_primary_rtmdet-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the RTMDet (MMYOLO) repo and install the requirements
```
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
pip3 install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0,<4.0.0"
pip3 install -r requirements/albu.txt
mim install -v -e .
pip3 install onnx onnxslim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_rtmdet.py` file from `DeepStream-Yolo/utils` directory to the `mmyolo` folder.
#### 3. Download the model
Download the `pth` file from [RTMDet (MMYOLO)](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet) releases (example for RTMDet-s*)
```
wget https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_s_rtmdet_m_neck_300e_coco/kd_s_rtmdet_m_neck_300e_coco_20230220_140647-446ff003.pth
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for RTMDet-s*)
```
python3 export_rtmdet.py -w kd_s_rtmdet_m_neck_300e_coco_20230220_140647-446ff003.pth -c configs/rtmdet/distillation/kd_s_rtmdet_m_neck_300e_coco.py --dynamic
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
```
--simplify
```
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
```
--dynamic
```
**NOTE**: To use static batch-size (example for batch-size = 4)
```
--batch 4
```
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 17.
```
--opset 12
```
#### 5. Copy generated files
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
##
### Compile the lib
1. Open the `DeepStream-Yolo` folder and compile the lib
2. Set the `CUDA_VER` according to your DeepStream version
```
export CUDA_VER=XY.Z
```
* x86 platform
```
DeepStream 7.1 = 12.6
DeepStream 7.0 / 6.4 = 12.2
DeepStream 6.3 = 12.1
DeepStream 6.2 = 11.8
DeepStream 6.1.1 = 11.7
DeepStream 6.1 = 11.6
DeepStream 6.0.1 / 6.0 = 11.4
DeepStream 5.1 = 11.1
```
* Jetson platform
```
DeepStream 7.1 = 12.6
DeepStream 7.0 / 6.4 = 12.2
DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
```
3. Make the lib
```
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_rtmdet file
Edit the `config_infer_primary_rtmdet.txt` file according to your model (example for RTMDet-s* with 80 classes)
```
[property]
...
onnx-file=kd_s_rtmdet_m_neck_300e_coco_20230220_140647-446ff003.pth.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
**NOTE**: The **RTMDet (MMYOLO)** resizes the input with center padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=1
...
```
**NOTE**: The **RTMDet (MMYOLO)** uses BGR color format for the image input. It is important to change the `model-color-format` according to the trained values.
```
[property]
...
model-color-format=1
...
```
**NOTE**: The **RTMDet (MMYOLO)** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values.
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
```
[property]
...
net-scale-factor=0.0173520735727919486
offsets=103.53;116.28;123.675
...
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_rtmdet.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.