150 lines
2.9 KiB
Markdown
150 lines
2.9 KiB
Markdown
# YOLOv8 usage
|
|
|
|
**NOTE**: The yaml file is not required.
|
|
|
|
* [Convert model](#convert-model)
|
|
* [Compile the lib](#compile-the-lib)
|
|
* [Edit the config_infer_primary_yoloV8 file](#edit-the-config_infer_primary_yolov8-file)
|
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
|
* [Testing the model](#testing-the-model)
|
|
|
|
##
|
|
|
|
### Convert model
|
|
|
|
#### 1. Download the YOLOv8 repo and install the requirements
|
|
|
|
```
|
|
git clone https://github.com/ultralytics/ultralytics.git
|
|
cd ultralytics
|
|
pip3 install -r requirements.txt
|
|
```
|
|
|
|
**NOTE**: It is recommended to use Python virtualenv.
|
|
|
|
#### 2. Copy conversor
|
|
|
|
Copy the `gen_wts_yoloV8.py` file from `DeepStream-Yolo/utils` directory to the `ultralytics` folder.
|
|
|
|
#### 3. Download the model
|
|
|
|
Download the `pt` file from [YOLOv8](https://github.com/ultralytics/assets/releases/) releases (example for YOLOv8s)
|
|
|
|
```
|
|
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
|
|
```
|
|
|
|
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolov8_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
|
|
|
|
#### 4. Convert model
|
|
|
|
Generate the `cfg`, `wts` and `labels.txt` (if available) files (example for YOLOv8s)
|
|
|
|
```
|
|
python3 gen_wts_yoloV8.py -w yolov8s.pt
|
|
```
|
|
|
|
**NOTE**: To change the inference size (defaut: 640)
|
|
|
|
```
|
|
-s SIZE
|
|
--size SIZE
|
|
-s HEIGHT WIDTH
|
|
--size HEIGHT WIDTH
|
|
```
|
|
|
|
Example for 1280
|
|
|
|
```
|
|
-s 1280
|
|
```
|
|
|
|
or
|
|
|
|
```
|
|
-s 1280 1280
|
|
```
|
|
|
|
#### 5. Copy generated files
|
|
|
|
Copy the generated `cfg`, `wts` and `labels.txt` (if generated), files to the `DeepStream-Yolo` folder.
|
|
|
|
##
|
|
|
|
### Compile the lib
|
|
|
|
Open the `DeepStream-Yolo` folder and compile the lib
|
|
|
|
* DeepStream 6.2 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the config_infer_primary_yoloV8 file
|
|
|
|
Edit the `config_infer_primary_yoloV8.txt` file according to your model (example for YOLOv8s with 80 classes)
|
|
|
|
```
|
|
[property]
|
|
...
|
|
custom-network-config=yolov8s.cfg
|
|
model-file=yolov8s.wts
|
|
...
|
|
num-detected-classes=80
|
|
...
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the deepstream_app_config file
|
|
|
|
```
|
|
...
|
|
[primary-gie]
|
|
...
|
|
config-file=config_infer_primary_yoloV8.txt
|
|
```
|
|
|
|
##
|
|
|
|
### Testing the model
|
|
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|
|
|
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|