178 lines
3.2 KiB
Markdown
178 lines
3.2 KiB
Markdown
# YOLOR usage
|
|
|
|
**NOTE**: Select the correct branch of the YOLOR repo before the conversion.
|
|
|
|
**NOTE**: The cfg file is required for the main branch.
|
|
|
|
* [Convert model](#convert-model)
|
|
* [Compile the lib](#compile-the-lib)
|
|
* [Edit the config_infer_primary_yolor file](#edit-the-config_infer_primary_yolor-file)
|
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
|
* [Testing the model](#testing-the-model)
|
|
|
|
##
|
|
|
|
### Convert model
|
|
|
|
#### 1. Download the YOLOR repo and install the requirements
|
|
|
|
```
|
|
git clone https://github.com/WongKinYiu/yolor.git
|
|
cd yolor
|
|
pip3 install -r requirements.txt
|
|
pip3 install onnx onnxsim onnxruntime
|
|
```
|
|
|
|
**NOTE**: It is recommended to use Python virtualenv.
|
|
|
|
#### 2. Copy conversor
|
|
|
|
Copy the `export_yolor.py` file from `DeepStream-Yolo/utils` directory to the `yolor` folder.
|
|
|
|
#### 3. Download the model
|
|
|
|
Download the `pt` file from [YOLOR](https://github.com/WongKinYiu/yolor) repo.
|
|
|
|
**NOTE**: You can use your custom model.
|
|
|
|
#### 4. Convert model
|
|
|
|
Generate the ONNX model file
|
|
|
|
- Main branch
|
|
|
|
Example for YOLOR-CSP
|
|
|
|
```
|
|
python3 export_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg --simplify --dynamic
|
|
```
|
|
|
|
- Paper branch
|
|
|
|
Example for YOLOR-P6
|
|
|
|
```
|
|
python3 export_yolor.py -w yolor-p6.pt --simplify --dynamic
|
|
```
|
|
|
|
**NOTE**: To convert a P6 model
|
|
|
|
```
|
|
--p6
|
|
```
|
|
|
|
**NOTE**: To change the inference size (defaut: 640)
|
|
|
|
```
|
|
-s SIZE
|
|
--size SIZE
|
|
-s HEIGHT WIDTH
|
|
--size HEIGHT WIDTH
|
|
```
|
|
|
|
Example for 1280
|
|
|
|
```
|
|
-s 1280
|
|
```
|
|
|
|
or
|
|
|
|
```
|
|
-s 1280 1280
|
|
```
|
|
|
|
#### 5. Copy generated files
|
|
|
|
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder
|
|
|
|
##
|
|
|
|
### Compile the lib
|
|
|
|
Open the `DeepStream-Yolo` folder and compile the lib
|
|
|
|
* DeepStream 6.2 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the config_infer_primary_yolor file
|
|
|
|
Edit the `config_infer_primary_yolor.txt` file according to your model (example for YOLOR-CSP with 80 classes)
|
|
|
|
```
|
|
[property]
|
|
...
|
|
onnx-file=yolor_csp.onnx
|
|
model-engine-file=yolor_csp.onnx_b1_gpu0_fp32.engine
|
|
...
|
|
num-detected-classes=80
|
|
...
|
|
parse-bbox-func-name=NvDsInferParseYolo
|
|
...
|
|
```
|
|
|
|
**NOTE**: The **YOLOR** resizes the input with center padding. To get better accuracy, use
|
|
|
|
```
|
|
maintain-aspect-ratio=1
|
|
symmetric-padding=1
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the deepstream_app_config file
|
|
|
|
```
|
|
...
|
|
[primary-gie]
|
|
...
|
|
config-file=config_infer_primary_yolor.txt
|
|
```
|
|
|
|
##
|
|
|
|
### Testing the model
|
|
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|
|
|
|
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
|
|
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|