122 lines
2.8 KiB
Markdown
122 lines
2.8 KiB
Markdown
# PP-YOLOE usage
|
|
|
|
* [Convert model](#convert-model)
|
|
* [Compile the lib](#compile-the-lib)
|
|
* [Edit the config_infer_primary_ppyoloe file](#edit-the-config_infer_primary_ppyoloe-file)
|
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
|
* [Testing the model](#testing-the-model)
|
|
|
|
##
|
|
|
|
### Convert model
|
|
|
|
#### 1. Download the PaddleDetection repo and install the requirements
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/INSTALL.md
|
|
|
|
**NOTE**: It is recommended to use Python virtualenv.
|
|
|
|
#### 2. Copy conversor
|
|
|
|
Copy the `gen_wts_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the `PaddleDetection` folder.
|
|
|
|
#### 3. Download the model
|
|
|
|
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe) releases (example for PP-YOLOE-s)
|
|
|
|
```
|
|
wget https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_400e_coco.pdparams
|
|
```
|
|
|
|
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`ppyoloe_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
|
|
|
|
#### 4. Convert model
|
|
|
|
Generate the `cfg` and `wts` files (example for PP-YOLOE-s)
|
|
|
|
```
|
|
python3 gen_wts_ppyoloe.py -w ppyoloe_crn_s_400e_coco.pdparams -c configs/ppyoloe/ppyoloe_crn_s_400e_coco.yml
|
|
```
|
|
|
|
#### 5. Copy generated files
|
|
|
|
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder.
|
|
|
|
##
|
|
|
|
### Compile the lib
|
|
|
|
Open the `DeepStream-Yolo` folder and compile the lib
|
|
|
|
* DeepStream 6.1.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1.1 / 6.1 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the config_infer_primary_ppyoloe file
|
|
|
|
Edit the `config_infer_primary_ppyoloe.txt` file according to your model (example for PP-YOLOE-s)
|
|
|
|
```
|
|
[property]
|
|
...
|
|
custom-network-config=ppyoloe_crn_s_400e_coco.cfg
|
|
model-file=ppyoloe_crn_s_400e_coco.wts
|
|
...
|
|
```
|
|
|
|
**NOTE**: The PP-YOLOE uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values.
|
|
|
|
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
|
|
|
|
```
|
|
net-scale-factor=0.0173520735727919486
|
|
offsets=123.675;116.28;103.53
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the deepstream_app_config file
|
|
|
|
```
|
|
...
|
|
[primary-gie]
|
|
...
|
|
config-file=config_infer_primary_ppyoloe.txt
|
|
```
|
|
|
|
##
|
|
|
|
### Testing the model
|
|
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|