Files
deepstream_yolo/docs/YOLOv6.md
Marcos Luciano 9fd80c5248 Fixes
2023-06-05 18:33:03 -03:00

209 lines
3.8 KiB
Markdown

# YOLOv6 usage
**NOTE**: You need to change the branch of the YOLOv6 repo according to the version of the model you want to convert.
**NOTE**: The yaml file is not required.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yoloV6 file](#edit-the-config_infer_primary_yolov6-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLOv6 repo and install the requirements
```
git clone https://github.com/meituan/YOLOv6.git
cd YOLOv6
pip3 install -r requirements.txt
pip3 install onnx onnxsim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_yoloV6.py` file from `DeepStream-Yolo/utils` directory to the `YOLOv6` folder.
#### 3. Download the model
Download the `pt` file from [YOLOv6](https://github.com/meituan/YOLOv6/releases/) releases (example for YOLOv6-S 4.0)
```
wget https://github.com/meituan/YOLOv6/releases/download/0.4.0/yolov6s.pt
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for YOLOv6-S 4.0)
```
python3 export_yoloV6.py -w yolov6s.pt --dynamic
```
**NOTE**: To simplify the ONNX model (DeepStream >= 6)
```
--simplify
```
**NOTE**: To use dynamic batch-size (DeepStream >= 6)
```
--dynamic
```
**NOTE**: To use implicit batch-size (example for batch-size = 4)
```
--batch 4
```
**NOTE**: If you are using DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 13.
```
--opset 12
```
**NOTE**: To convert a P6 model
```
--p6
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
#### 5. Copy generated file
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.2 on x86 platform
```
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1.1 on x86 platform
```
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 5.1 on x86 platform
```
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yoloV6 file
Edit the `config_infer_primary_yoloV6.txt` file according to your model (example for YOLOv6-S 4.0 with 80 classes)
```
[property]
...
onnx-file=yolov6s.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
**NOTE**: The **YOLOv6** resizes the input with center padding. To get better accuracy, use
```
...
maintain-aspect-ratio=1
symmetric-padding=1
...
```
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
...
force-implicit-batch-dim=1
...
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_yoloV6.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.