2.1 KiB
2.1 KiB
INT8 calibration (PTQ)
1. Install OpenCV
sudo apt-get install libopencv-dev
2. Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support
2.1. Set the CUDA_VER according to your DeepStream version
export CUDA_VER=XY.Z
-
x86 platform
DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 = 12.1 DeepStream 6.2 = 11.8 DeepStream 6.1.1 = 11.7 DeepStream 6.1 = 11.6 DeepStream 6.0.1 / 6.0 = 11.4 DeepStream 5.1 = 11.1 -
Jetson platform
DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4 DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
2.2. Set the OPENCV env
export OPENCV=1
2.3. Make the lib
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
3. For COCO dataset, download the val2017, extract, and move to DeepStream-Yolo folder
-
Select 1000 random images from COCO dataset to run calibration
mkdir calibrationfor jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \ cp ${jpg} calibration/; \ done -
Create the
calibration.txtfile with all selected imagesrealpath calibration/*jpg > calibration.txt -
Set environment variables
export INT8_CALIB_IMG_PATH=calibration.txt export INT8_CALIB_BATCH_SIZE=1 -
Edit the
config_inferfile... model-engine-file=model_b1_gpu0_fp32.engine #int8-calib-file=calib.table ... network-mode=0 ...To
... model-engine-file=model_b1_gpu0_int8.engine int8-calib-file=calib.table ... network-mode=1 ... -
Run
deepstream-app -c deepstream_app_config.txt
NOTE: NVIDIA recommends at least 500 images to get a good accuracy. On this example, I recommend to use 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will result in more accuracy and faster calibration speed. Set it according to you GPU memory. This process may take a long time.