Files
deepstream_yolo/docs/RTDETR_Ultralytics.md
2023-11-23 21:08:37 -03:00

3.7 KiB

RT-DETR Ultralytics usage

NOTE: Ultralytics (https://docs.ultralytics.com/models/rtdetr) version.

Convert model

1. Download the Ultralytics repo and install the requirements

git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip3 install -r requirements.txt
python3 setup.py install
pip3 install onnx onnxsim onnxruntime

NOTE: It is recommended to use Python virtualenv.

2. Copy conversor

Copy the export_rtdetr_ultralytics.py file from DeepStream-Yolo/utils directory to the ultralytics folder.

3. Download the model

Download the pt file from Ultralytics releases (example for RT-DETR-l)

wget https://github.com/ultralytics/assets/releases/download/v0.0.0/rtdetr-l.pt

NOTE: You can use your custom model.

4. Convert model

Generate the ONNX model file (example for RT-DETR-l)

python3 export_rtdetr_ultralytics.py -w rtdetr-l.pt --dynamic

NOTE: To change the inference size (defaut: 640)

-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH

Example for 1280

-s 1280

or

-s 1280 1280

NOTE: To simplify the ONNX model (DeepStream >= 6.0)

--simplify

NOTE: To use dynamic batch-size (DeepStream >= 6.1)

--dynamic

NOTE: To use static batch-size (example for batch-size = 4)

--batch 4

NOTE: If you are using the DeepStream 5.1, remove the --dynamic arg and use opset 12 or lower. The default opset is 16.

--opset 12

5. Copy generated files

Copy the generated ONNX model file and labels.txt file (if generated) to the DeepStream-Yolo folder.

Compile the lib

Open the DeepStream-Yolo folder and compile the lib

  • DeepStream 6.3 on x86 platform

    CUDA_VER=12.1 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.2 on x86 platform

    CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.1.1 on x86 platform

    CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.1 on x86 platform

    CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.0.1 / 6.0 on x86 platform

    CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 5.1 on x86 platform

    CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 on Jetson platform

    CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
    
  • DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform

    CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
    

Edit the config_infer_primary_rtdetr file

Edit the config_infer_primary_rtdetr.txt file according to your model (example for RT-DETR-l with 80 classes)

[property]
...
onnx-file=rtdetr-l.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...

NOTE: The RT-DETR Ultralytics do not resize the input with padding. To get better accuracy, use

[property]
...
maintain-aspect-ratio=0
...

Edit the deepstream_app_config file

...
[primary-gie]
...
config-file=config_infer_primary_rtdetr.txt

Testing the model

deepstream-app -c deepstream_app_config.txt

NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).

NOTE: For more information about custom models configuration (batch-size, network-mode, etc), please check the docs/customModels.md file.