3.7 KiB
YOLOv5 usage
NOTE: You can use the master branch of the YOLOv5 repo to convert all model versions.
NOTE: The yaml file is not required.
- Convert model
- Compile the lib
- Edit the config_infer_primary_yoloV5 file
- Edit the deepstream_app_config file
- Testing the model
Convert model
1. Download the YOLOv5 repo and install the requirements
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip3 install -r requirements.txt
pip3 install onnx onnxsim onnxruntime
NOTE: It is recommended to use Python virtualenv.
2. Copy conversor
Copy the export_yoloV5.py file from DeepStream-Yolo/utils directory to the yolov5 folder.
3. Download the model
Download the pt file from YOLOv5 releases (example for YOLOv5s 7.0)
wget https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt
NOTE: You can use your custom model.
4. Convert model
Generate the ONNX model file (example for YOLOv5s)
python3 export_yoloV5.py -w yolov5s.pt --simplify --dynamic
NOTE: To simplify the ONNX model
--simplify
NOTE: To use dynamic batch-size
--dynamic
NOTE: To use implicit batch-size (example for batch-size = 4)
--batch 4
NOTE: If you are using DeepStream 5.1, use opset 12 or lower. The default opset is 17.
--opset 12
NOTE: To convert a P6 model
--p6
NOTE: To change the inference size (defaut: 640)
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
Example for 1280
-s 1280
or
-s 1280 1280
5. Copy generated files
Copy the generated ONNX model file and labels.txt file (if generated) to the DeepStream-Yolo folder.
Compile the lib
Open the DeepStream-Yolo folder and compile the lib
-
DeepStream 6.2 on x86 platform
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.1.1 on x86 platform
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 5.1 on x86 platform
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_yoloV5 file
Edit the config_infer_primary_yoloV5.txt file according to your model (example for YOLOv5s with 80 classes)
[property]
...
onnx-file=yolov5s.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
NOTE: The YOLOv5 resizes the input with center padding. To get better accuracy, use
...
maintain-aspect-ratio=1
symmetric-padding=1
...
NOTE: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
...
force-implicit-batch-dim=1
...
Edit the deepstream_app_config file
...
[primary-gie]
...
config-file=config_infer_primary_yoloV5.txt
Testing the model
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: For more information about custom models configuration (batch-size, network-mode, etc), please check the docs/customModels.md file.