- Added support for INT8 calibration - Added support for non square models - Updated mAP comparison between models - Minor fixes
271 lines
15 KiB
Markdown
271 lines
15 KiB
Markdown
# DeepStream-Yolo
|
|
NVIDIA DeepStream SDK 5.1 configuration for YOLO models
|
|
|
|
##
|
|
|
|
### Improvements on this repository
|
|
|
|
* Darknet CFG params parser (not need to edit nvdsparsebbox_Yolo.cpp or another file for native models)
|
|
* Support for new_coords, beta_nms and scale_x_y params
|
|
* Support for new models not supported in official DeepStream SDK YOLO.
|
|
* Support for layers not supported in official DeepStream SDK YOLO.
|
|
* Support for activations not supported in official DeepStream SDK YOLO.
|
|
* Support for Convolutional groups
|
|
* **Support for INT8 calibration** (not available for YOLOv5 models)
|
|
* **Support for non square models**
|
|
|
|
##
|
|
|
|
Tutorial
|
|
* [Basic usage](#basic-usage)
|
|
* [INT8 calibration](#int8-calibration)
|
|
* [Configuring to your custom model](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/customModels.md)
|
|
* [Multiple YOLO inferences](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/multipleInferences.md)
|
|
|
|
TensorRT conversion
|
|
* Native (tested models below)
|
|
* [YOLOv4x-Mish](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4x-mish.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.weights)]
|
|
* [YOLOv4-CSP](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-csp) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-csp.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.weights)]
|
|
* [YOLOv4](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights)]
|
|
* [YOLOv4-Tiny](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights)]
|
|
* [YOLOv3-SPP](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-spp.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-spp.weights)]
|
|
* [YOLOv3](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg)] [[weights](https://pjreddie.com/media/files/yolov3.weights)]
|
|
* [YOLOv3-Tiny-PRN](https://github.com/WongKinYiu/PartialResidualNetworks) [[cfg](https://raw.githubusercontent.com/WongKinYiu/PartialResidualNetworks/master/cfg/yolov3-tiny-prn.cfg)] [[weights](https://github.com/WongKinYiu/PartialResidualNetworks/raw/master/model/yolov3-tiny-prn.weights)]
|
|
* [YOLOv3-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-tiny.weights)]
|
|
* [YOLOv3-Lite](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.weights)]
|
|
* [YOLOv3-Nano](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.weights)]
|
|
* [YOLO-Fastest 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.weights)]
|
|
* [YOLO-Fastest-XL 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.weights)]
|
|
* [YOLOv2](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2.cfg)] [[weights](https://pjreddie.com/media/files/yolov2.weights)]
|
|
* [YOLOv2-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov2-tiny.weights)]
|
|
|
|
* External
|
|
* [YOLOv5 5.0](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-5.0.md)
|
|
* [YOLOv5 4.0](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-4.0.md)
|
|
* [YOLOv5 3.X (3.0/3.1)](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-3.X.md)
|
|
|
|
Benchmark
|
|
* [mAP/FPS comparison between models](#mapfps-comparison-between-models)
|
|
|
|
##
|
|
|
|
### Requirements
|
|
* [NVIDIA DeepStream SDK 5.1](https://developer.nvidia.com/deepstream-sdk)
|
|
* [DeepStream-Yolo Native](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/native) (for Darknet YOLO based models)
|
|
* [DeepStream-Yolo External](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external) (for PyTorch YOLOv5 based model)
|
|
|
|
##
|
|
|
|
### Basic usage
|
|
|
|
```
|
|
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
|
|
cd DeepStream-Yolo/native
|
|
```
|
|
|
|
Download cfg and weights files from your model and move to DeepStream-Yolo/native folder
|
|
|
|
Compile
|
|
|
|
* x86 platform
|
|
```
|
|
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* Jetson platform
|
|
```
|
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
Edit config_infer_primary.txt for your model (example for YOLOv4)
|
|
```
|
|
[property]
|
|
...
|
|
# 0=RGB, 1=BGR, 2=GRAYSCALE
|
|
model-color-format=0
|
|
# CFG
|
|
custom-network-config=yolov4.cfg
|
|
# Weights
|
|
model-file=yolov4.weights
|
|
# Generated TensorRT model (will be created if it doesn't exist)
|
|
model-engine-file=model_b1_gpu0_fp32.engine
|
|
# Model labels file
|
|
labelfile-path=labels.txt
|
|
# Batch size
|
|
batch-size=1
|
|
# 0=FP32, 1=INT8, 2=FP16 mode
|
|
network-mode=0
|
|
# Number of classes in label file
|
|
num-detected-classes=80
|
|
...
|
|
[class-attrs-all]
|
|
# CONF_THRESH
|
|
pre-cluster-threshold=0.25
|
|
```
|
|
|
|
Run
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|
|
|
|
If you want to use YOLOv2 or YOLOv2-Tiny models, change, before run, deepstream_app_config.txt
|
|
```
|
|
[primary-gie]
|
|
enable=1
|
|
gpu-id=0
|
|
gie-unique-id=1
|
|
nvbuf-memory-type=0
|
|
config-file=config_infer_primary_yoloV2.txt
|
|
```
|
|
|
|
Note: config_infer_primary.txt uses cluster-mode=4 and NMS = 0.45 (via code) when beta_nms isn't available (when beta_nms is available, NMS = beta_nms), while config_infer_primary_yoloV2.txt uses cluster-mode=2 and nms-iou-threshold=0.45 to set NMS.
|
|
|
|
##
|
|
|
|
### INT8 calibration
|
|
|
|
Install OpenCV
|
|
```
|
|
sudo apt-get install libopencv-dev
|
|
```
|
|
|
|
Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support
|
|
|
|
* x86 platform
|
|
```
|
|
cd DeepStream-Yolo/native
|
|
CUDA_VER=11.1 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* Jetson platform
|
|
```
|
|
cd DeepStream-Yolo/native
|
|
CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
For COCO dataset, download the [val2017](https://drive.google.com/file/d/1gbvfn7mcsGDRZ_luJwtITL-ru2kK99aK/view?usp=sharing), extract, and move to DeepStream-Yolo/native folder
|
|
|
|
Select 1000 random images from COCO dataset to run calibration
|
|
```
|
|
mkdir calibration
|
|
for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \
|
|
cp val2017/${jpg} calibration/; \
|
|
done
|
|
```
|
|
|
|
Create the calibration.txt file with all selected images
|
|
```
|
|
realpath calibration/*jpg > calibration.txt
|
|
```
|
|
|
|
Set environment variables
|
|
```
|
|
export INT8_CALIB_IMG_PATH=calibration.txt
|
|
export INT8_CALIB_BATCH_SIZE=1
|
|
```
|
|
|
|
Change config_infer_primary.txt file
|
|
```
|
|
...
|
|
model-engine-file=model_b1_gpu0_fp32.engine
|
|
#int8-calib-file=calib.table
|
|
...
|
|
network-mode=0
|
|
...
|
|
```
|
|
To
|
|
```
|
|
...
|
|
model-engine-file=model_b1_gpu0_int8.engine
|
|
int8-calib-file=calib.table
|
|
...
|
|
network-mode=1
|
|
...
|
|
```
|
|
|
|
Run
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|
|
|
|
Note: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time. The calibration isn't available for YOLOv5 models.
|
|
|
|
##
|
|
|
|
### mAP/FPS comparison between models
|
|
|
|
<details><summary>Open</summary>
|
|
|
|
```
|
|
valid = val2017 (COCO)
|
|
NMS = 0.45 (changed to beta_nms when used in Darknet cfg file) / 0.6 (YOLOv5 models)
|
|
pre-cluster-threshold = 0.001 (mAP eval) / 0.25 (FPS measurement)
|
|
batch-size = 1
|
|
FPS measurement display width = 1920
|
|
FPS measurement display height = 1080
|
|
NOTE: Used NVIDIA GTX 1050 (4GB Mobile) for evaluate. Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_box=1) and YOLOv5 models. For INT8 calibration, was used 1000 random images from val2017 (COCO) and INT8_CALIB_BATCH_SIZE=1.
|
|
```
|
|
|
|
| TensorRT | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(with display) | FPS<br />(without display) |
|
|
|:---------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:-----------------------:|:--------------------------:|
|
|
| YOLOv5x 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
|
|
| YOLOv5l 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
|
|
| YOLOv5m 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
|
|
| YOLOv5s 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
|
|
| YOLOv5s 5.0 | FP32 | 416 | 0. | 0. | 0. | . | . |
|
|
| YOLOv4x-MISH | FP32 | 640 | 0.461 | 0.649 | 0.499 | . | . |
|
|
| YOLOv4x-MISH | **INT8** | 640 | 0.443 | 0.629 | 0.479 | . | . |
|
|
| YOLOv4x-MISH | FP32 | 608 | 0.461 | 0.650 | 0.496 | . | . |
|
|
| YOLOv4-CSP | FP32 | 640 | 0.443 | 0.632 | 0.477 | . | . |
|
|
| YOLOv4-CSP | FP32 | 608 | 0.443 | 0.632 | 0.477 | . | . |
|
|
| YOLOv4-CSP | FP32 | 512 | 0.437 | 0.625 | 0.471 | . | . |
|
|
| YOLOv4-CSP | **INT8** | 512 | 0.414 | 0.601 | 0.447 | . | . |
|
|
| YOLOv4 | FP32 | 640 | 0.492 | 0.729 | 0.547 | . | . |
|
|
| YOLOv4 | FP32 | 608 | 0.499 | 0.739 | 0.551 | . | . |
|
|
| YOLOv4 | **INT8** | 608 | 0.483 | 0.728 | 0.534 | . | . |
|
|
| YOLOv4 | FP32 | 512 | 0.492 | 0.730 | 0.542 | . | . |
|
|
| YOLOv4 | FP32 | 416 | 0.468 | 0.702 | 0.507 | . | . |
|
|
| YOLOv3-SPP | FP32 | 608 | 0.412 | 0.687 | 0.434 | . | . |
|
|
| YOLOv3 | FP32 | 608 | 0.378 | 0.674 | 0.389 | . | . |
|
|
| YOLOv3 | **INT8** | 608 | 0.381 | 0.677 | 0.388 | . | . |
|
|
| YOLOv3 | FP32 | 416 | 0.373 | 0.669 | 0.379 | . | . |
|
|
| YOLOv2 | FP32 | 608 | 0.211 | 0.365 | 0.220 | . | . |
|
|
| YOLOv2 | FP32 | 416 | 0.207 | 0.362 | 0.211 | . | . |
|
|
| YOLOv4-Tiny | FP32 | 416 | 0.216 | 0.403 | 0.207 | . | . |
|
|
| YOLOv4-Tiny | **INT8** | 416 | 0.203 | 0.385 | 0.192 | . | . |
|
|
| YOLOv3-Tiny-PRN | FP32 | 416 | 0.168 | 0.381 | 0.126 | . | . |
|
|
| YOLOv3-Tiny-PRN | **INT8** | 416 | 0.155 | 0.358 | 0.113 | . | . |
|
|
| YOLOv3-Tiny | FP32 | 416 | 0.096 | 0.203 | 0.080 | . | . |
|
|
| YOLOv2-Tiny | FP32 | 416 | 0.084 | 0.194 | 0.062 | . | . |
|
|
| YOLOv3-Lite | FP32 | 416 | 0.169 | 0.356 | 0.137 | . | . |
|
|
| YOLOv3-Lite | FP32 | 320 | 0.158 | 0.328 | 0.132 | . | . |
|
|
| YOLOv3-Nano | FP32 | 416 | 0.128 | 0.278 | 0.099 | . | . |
|
|
| YOLOv3-Nano | FP32 | 320 | 0.122 | 0.260 | 0.099 | . | . |
|
|
| YOLO-Fastest-XL | FP32 | 416 | 0.160 | 0.342 | 0.130 | . | . |
|
|
| YOLO-Fastest-XL | FP32 | 320 | 0.158 | 0.329 | 0.135 | . | . |
|
|
| YOLO-Fastest | FP32 | 416 | 0.101 | 0.230 | 0.072 | . | . |
|
|
| YOLO-Fastest | FP32 | 320 | 0.102 | 0.232 | 0.073 | . | . |
|
|
|
|
</details>
|
|
|
|
##
|
|
|
|
### Extract metadata
|
|
|
|
You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit [deepstream_python_apps](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps).
|
|
|
|
You need manipulate NvDsObjectMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/Meta/_NvDsObjectMeta.html)), NvDsFrameMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/Meta/_NvDsFrameMeta.html)) and NvOSD_RectParams ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsOSD/NvOSD_RectParams.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/OSD/Data_Structures/_NvOSD_FrameRectParams.html)) to get label, position, etc. of bboxs.
|
|
|
|
In C++ deepstream-app application, your code need be in analytics_done_buf_prob function.
|
|
In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function.
|
|
|
|
Python is slightly slower than C (about 5-10%).
|
|
|
|
##
|
|
|
|
This code is open-source. You can use as you want. :)
|
|
|
|
If you want me to create commercial DeepStream SDK projects for you, contact me at email address available in GitHub.
|
|
|
|
My projects: https://www.youtube.com/MarcosLucianoTV
|