Files
deepstream_yolo/readme.md
Marcos Luciano 80b1c61488 New features
- Added support for INT8 calibration
- Added support for non square models
- Updated mAP comparison between models
- Minor fixes
2021-06-18 00:33:07 -03:00

271 lines
15 KiB
Markdown

# DeepStream-Yolo
NVIDIA DeepStream SDK 5.1 configuration for YOLO models
##
### Improvements on this repository
* Darknet CFG params parser (not need to edit nvdsparsebbox_Yolo.cpp or another file for native models)
* Support for new_coords, beta_nms and scale_x_y params
* Support for new models not supported in official DeepStream SDK YOLO.
* Support for layers not supported in official DeepStream SDK YOLO.
* Support for activations not supported in official DeepStream SDK YOLO.
* Support for Convolutional groups
* **Support for INT8 calibration** (not available for YOLOv5 models)
* **Support for non square models**
##
Tutorial
* [Basic usage](#basic-usage)
* [INT8 calibration](#int8-calibration)
* [Configuring to your custom model](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/customModels.md)
* [Multiple YOLO inferences](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/multipleInferences.md)
TensorRT conversion
* Native (tested models below)
* [YOLOv4x-Mish](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4x-mish.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.weights)]
* [YOLOv4-CSP](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-csp) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-csp.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.weights)]
* [YOLOv4](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights)]
* [YOLOv4-Tiny](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights)]
* [YOLOv3-SPP](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-spp.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-spp.weights)]
* [YOLOv3](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg)] [[weights](https://pjreddie.com/media/files/yolov3.weights)]
* [YOLOv3-Tiny-PRN](https://github.com/WongKinYiu/PartialResidualNetworks) [[cfg](https://raw.githubusercontent.com/WongKinYiu/PartialResidualNetworks/master/cfg/yolov3-tiny-prn.cfg)] [[weights](https://github.com/WongKinYiu/PartialResidualNetworks/raw/master/model/yolov3-tiny-prn.weights)]
* [YOLOv3-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-tiny.weights)]
* [YOLOv3-Lite](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.weights)]
* [YOLOv3-Nano](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.weights)]
* [YOLO-Fastest 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.weights)]
* [YOLO-Fastest-XL 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.weights)]
* [YOLOv2](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2.cfg)] [[weights](https://pjreddie.com/media/files/yolov2.weights)]
* [YOLOv2-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov2-tiny.weights)]
* External
* [YOLOv5 5.0](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-5.0.md)
* [YOLOv5 4.0](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-4.0.md)
* [YOLOv5 3.X (3.0/3.1)](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-3.X.md)
Benchmark
* [mAP/FPS comparison between models](#mapfps-comparison-between-models)
##
### Requirements
* [NVIDIA DeepStream SDK 5.1](https://developer.nvidia.com/deepstream-sdk)
* [DeepStream-Yolo Native](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/native) (for Darknet YOLO based models)
* [DeepStream-Yolo External](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external) (for PyTorch YOLOv5 based model)
##
### Basic usage
```
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo/native
```
Download cfg and weights files from your model and move to DeepStream-Yolo/native folder
Compile
* x86 platform
```
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
```
* Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
Edit config_infer_primary.txt for your model (example for YOLOv4)
```
[property]
...
# 0=RGB, 1=BGR, 2=GRAYSCALE
model-color-format=0
# CFG
custom-network-config=yolov4.cfg
# Weights
model-file=yolov4.weights
# Generated TensorRT model (will be created if it doesn't exist)
model-engine-file=model_b1_gpu0_fp32.engine
# Model labels file
labelfile-path=labels.txt
# Batch size
batch-size=1
# 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
# Number of classes in label file
num-detected-classes=80
...
[class-attrs-all]
# CONF_THRESH
pre-cluster-threshold=0.25
```
Run
```
deepstream-app -c deepstream_app_config.txt
```
If you want to use YOLOv2 or YOLOv2-Tiny models, change, before run, deepstream_app_config.txt
```
[primary-gie]
enable=1
gpu-id=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV2.txt
```
Note: config_infer_primary.txt uses cluster-mode=4 and NMS = 0.45 (via code) when beta_nms isn't available (when beta_nms is available, NMS = beta_nms), while config_infer_primary_yoloV2.txt uses cluster-mode=2 and nms-iou-threshold=0.45 to set NMS.
##
### INT8 calibration
Install OpenCV
```
sudo apt-get install libopencv-dev
```
Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support
* x86 platform
```
cd DeepStream-Yolo/native
CUDA_VER=11.1 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
```
* Jetson platform
```
cd DeepStream-Yolo/native
CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
```
For COCO dataset, download the [val2017](https://drive.google.com/file/d/1gbvfn7mcsGDRZ_luJwtITL-ru2kK99aK/view?usp=sharing), extract, and move to DeepStream-Yolo/native folder
Select 1000 random images from COCO dataset to run calibration
```
mkdir calibration
for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \
cp val2017/${jpg} calibration/; \
done
```
Create the calibration.txt file with all selected images
```
realpath calibration/*jpg > calibration.txt
```
Set environment variables
```
export INT8_CALIB_IMG_PATH=calibration.txt
export INT8_CALIB_BATCH_SIZE=1
```
Change config_infer_primary.txt file
```
...
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
...
network-mode=0
...
```
To
```
...
model-engine-file=model_b1_gpu0_int8.engine
int8-calib-file=calib.table
...
network-mode=1
...
```
Run
```
deepstream-app -c deepstream_app_config.txt
```
Note: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time. The calibration isn't available for YOLOv5 models.
##
### mAP/FPS comparison between models
<details><summary>Open</summary>
```
valid = val2017 (COCO)
NMS = 0.45 (changed to beta_nms when used in Darknet cfg file) / 0.6 (YOLOv5 models)
pre-cluster-threshold = 0.001 (mAP eval) / 0.25 (FPS measurement)
batch-size = 1
FPS measurement display width = 1920
FPS measurement display height = 1080
NOTE: Used NVIDIA GTX 1050 (4GB Mobile) for evaluate. Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_box=1) and YOLOv5 models. For INT8 calibration, was used 1000 random images from val2017 (COCO) and INT8_CALIB_BATCH_SIZE=1.
```
| TensorRT | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(with display) | FPS<br />(without display) |
|:---------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:-----------------------:|:--------------------------:|
| YOLOv5x 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5l 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5m 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5s 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5s 5.0 | FP32 | 416 | 0. | 0. | 0. | . | . |
| YOLOv4x-MISH | FP32 | 640 | 0.461 | 0.649 | 0.499 | . | . |
| YOLOv4x-MISH | **INT8** | 640 | 0.443 | 0.629 | 0.479 | . | . |
| YOLOv4x-MISH | FP32 | 608 | 0.461 | 0.650 | 0.496 | . | . |
| YOLOv4-CSP | FP32 | 640 | 0.443 | 0.632 | 0.477 | . | . |
| YOLOv4-CSP | FP32 | 608 | 0.443 | 0.632 | 0.477 | . | . |
| YOLOv4-CSP | FP32 | 512 | 0.437 | 0.625 | 0.471 | . | . |
| YOLOv4-CSP | **INT8** | 512 | 0.414 | 0.601 | 0.447 | . | . |
| YOLOv4 | FP32 | 640 | 0.492 | 0.729 | 0.547 | . | . |
| YOLOv4 | FP32 | 608 | 0.499 | 0.739 | 0.551 | . | . |
| YOLOv4 | **INT8** | 608 | 0.483 | 0.728 | 0.534 | . | . |
| YOLOv4 | FP32 | 512 | 0.492 | 0.730 | 0.542 | . | . |
| YOLOv4 | FP32 | 416 | 0.468 | 0.702 | 0.507 | . | . |
| YOLOv3-SPP | FP32 | 608 | 0.412 | 0.687 | 0.434 | . | . |
| YOLOv3 | FP32 | 608 | 0.378 | 0.674 | 0.389 | . | . |
| YOLOv3 | **INT8** | 608 | 0.381 | 0.677 | 0.388 | . | . |
| YOLOv3 | FP32 | 416 | 0.373 | 0.669 | 0.379 | . | . |
| YOLOv2 | FP32 | 608 | 0.211 | 0.365 | 0.220 | . | . |
| YOLOv2 | FP32 | 416 | 0.207 | 0.362 | 0.211 | . | . |
| YOLOv4-Tiny | FP32 | 416 | 0.216 | 0.403 | 0.207 | . | . |
| YOLOv4-Tiny | **INT8** | 416 | 0.203 | 0.385 | 0.192 | . | . |
| YOLOv3-Tiny-PRN | FP32 | 416 | 0.168 | 0.381 | 0.126 | . | . |
| YOLOv3-Tiny-PRN | **INT8** | 416 | 0.155 | 0.358 | 0.113 | . | . |
| YOLOv3-Tiny | FP32 | 416 | 0.096 | 0.203 | 0.080 | . | . |
| YOLOv2-Tiny | FP32 | 416 | 0.084 | 0.194 | 0.062 | . | . |
| YOLOv3-Lite | FP32 | 416 | 0.169 | 0.356 | 0.137 | . | . |
| YOLOv3-Lite | FP32 | 320 | 0.158 | 0.328 | 0.132 | . | . |
| YOLOv3-Nano | FP32 | 416 | 0.128 | 0.278 | 0.099 | . | . |
| YOLOv3-Nano | FP32 | 320 | 0.122 | 0.260 | 0.099 | . | . |
| YOLO-Fastest-XL | FP32 | 416 | 0.160 | 0.342 | 0.130 | . | . |
| YOLO-Fastest-XL | FP32 | 320 | 0.158 | 0.329 | 0.135 | . | . |
| YOLO-Fastest | FP32 | 416 | 0.101 | 0.230 | 0.072 | . | . |
| YOLO-Fastest | FP32 | 320 | 0.102 | 0.232 | 0.073 | . | . |
</details>
##
### Extract metadata
You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit [deepstream_python_apps](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps).
You need manipulate NvDsObjectMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/Meta/_NvDsObjectMeta.html)), NvDsFrameMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/Meta/_NvDsFrameMeta.html)) and NvOSD_RectParams ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsOSD/NvOSD_RectParams.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/OSD/Data_Structures/_NvOSD_FrameRectParams.html)) to get label, position, etc. of bboxs.
In C++ deepstream-app application, your code need be in analytics_done_buf_prob function.
In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function.
Python is slightly slower than C (about 5-10%).
##
This code is open-source. You can use as you want. :)
If you want me to create commercial DeepStream SDK projects for you, contact me at email address available in GitHub.
My projects: https://www.youtube.com/MarcosLucianoTV