3.5 KiB
YOLO-NAS usage
NOTE: The yaml file is not required.
- Convert model
- Compile the lib
- Edit the config_infer_primary_yolonas file
- Edit the deepstream_app_config file
- Testing the model
Convert model
1. Download the YOLO-NAS repo and install the requirements
git clone https://github.com/Deci-AI/super-gradients.git
cd super-gradients
pip3 install -r requirements.txt
python3 setup.py install
pip3 install onnx onnxsim onnxruntime
NOTE: It is recommended to use Python virtualenv.
2. Copy conversor
Copy the export_yolonas.py file from DeepStream-Yolo/utils directory to the super-gradients folder.
3. Download the model
Download the pth file from YOLO-NAS releases (example for YOLO-NAS S)
wget https://sghub.deci.ai/models/yolo_nas_s_coco.pth
NOTE: You can use your custom model.
4. Convert model
Generate the ONNX model file (example for YOLO-NAS S)
python3 export_yolonas.py -m yolo_nas_s -w yolo_nas_s_coco.pth --simplify --dynamic
NOTE: If you are using DeepStream 5.1, use opset 12 or lower. The default opset is 14.
--opset 12
NOTE: Model names
-m yolo_nas_s
or
-m yolo_nas_m
or
-m yolo_nas_l
NOTE: To change the inference size (defaut: 640)
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
Example for 1280
-s 1280
or
-s 1280 1280
5. Copy generated file
Copy the generated ONNX model file to the DeepStream-Yolo folder.
Compile the lib
Open the DeepStream-Yolo folder and compile the lib
-
DeepStream 6.2 on x86 platform
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.1.1 on x86 platform
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 5.1 on x86 platform
CUDA_VER=11.1 LEGACY=1 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 6.0.1 / 6.0 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo -
DeepStream 5.1 on Jetson platform
CUDA_VER=10.2 LEGACY=1 make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_yolonas file
Edit the config_infer_primary_yolonas.txt file according to your model (example for YOLO-NAS S with 80 classes)
[property]
...
onnx-file=yolo_nas_s_coco.onnx
model-engine-file=yolo_nas_s_coco.onnx_b1_gpu0_fp32.engine
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYoloE
...
NOTE: The YOLO-NAS resizes the input with left/top padding. To get better accuracy, use
maintain-aspect-ratio=1
symmetric-padding=0
Edit the deepstream_app_config file
...
[primary-gie]
...
config-file=config_infer_primary_yolonas.txt
Testing the model
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: For more information about custom models configuration (batch-size, network-mode, etc), please check the docs/customModels.md file.