Files
deepstream_yolo/docs/PPYOLOE.md
2023-05-31 15:58:17 -03:00

173 lines
4.2 KiB
Markdown

# PP-YOLOE / PP-YOLOE+ usage
**NOTE**: You can use the release/2.6 branch of the PPYOLOE repo to convert all model versions.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_ppyoloe_plus file](#edit-the-config_infer_primary_ppyoloe_plus-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the PaddleDetection repo and install the requirements
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/docs/tutorials/INSTALL.md
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the `PaddleDetection` folder.
#### 3. Download the model
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ppyoloe) releases (example for PP-YOLOE+_s)
```
wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for PP-YOLOE+_s)
```
pip3 install onnx onnxsim onnxruntime
python3 export_ppyoloe.py -w ppyoloe_plus_crn_s_80e_coco.pdparams -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml --simplify
```
**NOTE**: If you are using DeepStream 5.1, use opset 12 or lower. The default opset is 11.
```
--opset 12
```
#### 5. Copy generated files
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.2 on x86 platform
```
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1.1 on x86 platform
```
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 5.1 on x86 platform
```
CUDA_VER=11.1 LEGACY=1 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 5.1 on Jetson platform
```
CUDA_VER=10.2 LEGACY=1 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_ppyoloe_plus file
Edit the `config_infer_primary_ppyoloe_plus.txt` file according to your model (example for PP-YOLOE+_s with 80 classes)
```
[property]
...
onnx-file=ppyoloe_plus_crn_s_80e_coco.onnx
model-engine-file=ppyoloe_plus_crn_s_80e_coco.onnx_b1_gpu0_fp32.engine
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYoloE
...
```
**NOTE**: If you use the **legacy** model, you should edit the `config_infer_primary_ppyoloe.txt` file.
**NOTE**: The **PP-YOLOE+ and PP-YOLOE legacy** do not resize the input with padding. To get better accuracy, use
```
maintain-aspect-ratio=0
```
**NOTE**: The **PP-YOLOE+** uses zero mean normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
net-scale-factor=0.0039215697906911373
```
**NOTE**: The **PP-YOLOE legacy** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values.
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
```
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_ppyoloe_plus.txt
```
**NOTE**: If you use the **legacy** model, you should edit it to `config_infer_primary_ppyoloe.txt`.
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.