Files
deepstream_yolo/YOLOv5-5.0.md
Marcos Luciano 7236ab3aeb Updated PyTorch and Torchvision for Jeston
PyTorch 1.8.0
Torchvision 0.9.0
2021-05-09 16:49:35 -03:00

174 lines
4.5 KiB
Markdown

# YOLOv5
NVIDIA DeepStream SDK 5.1 configuration for YOLOv5 5.0 models
Thanks [wang-xinyu](https://github.com/wang-xinyu/tensorrtx) and [Ultralytics](https://github.com/ultralytics/yolov5)
##
* [Requirements](#requirements)
* [Convert PyTorch model to wts file](#convert-pytorch-model-to-wts-file)
* [Convert wts file to TensorRT model](#convert-wts-file-to-tensorrt-model)
* [Compile nvdsinfer_custom_impl_Yolo](#compile-nvdsinfer_custom_impl_yolo)
* [Testing model](#testing-model)
##
### Requirements
* [TensorRTX](https://github.com/wang-xinyu/tensorrtx/blob/master/tutorials/install.md)
* [Ultralytics](https://github.com/ultralytics/yolov5/blob/master/requirements.txt)
* Matplotlib (for Jetson plataform)
```
sudo apt-get install python3-matplotlib
```
* PyTorch (for Jetson plataform)
```
wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.8.0-cp36-cp36m-linux_aarch64.whl
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev
pip3 install Cython
pip3 install numpy torch-1.8.0-cp36-cp36m-linux_aarch64.whl
```
* TorchVision (for Jetson platform)
```
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
git clone --branch 0.9.0 https://github.com/pytorch/vision torchvision
cd torchvision
export BUILD_VERSION=0.9.0
python3 setup.py install --user
```
##
### Convert PyTorch model to wts file
1. Download repositories
```
git clone https://github.com/wang-xinyu/tensorrtx.git
git clone https://github.com/ultralytics/yolov5.git
```
2. Download latest YoloV5 (YOLOv5s, YOLOv5m, YOLOv5l or YOLOv5x) weights to yolov5 folder (example for YOLOv5s)
```
wget https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt -P yolov5/
```
3. Copy gen_wts.py file (from tensorrtx/yolov5 folder) to yolov5 (ultralytics) folder
```
cp tensorrtx/yolov5/gen_wts.py yolov5/gen_wts.py
```
4. Generate wts file
```
cd yolov5
python3 gen_wts.py yolov5s.pt
```
yolov5s.wts file will be generated in yolov5 folder
##
### Convert wts file to TensorRT model
1. Build tensorrtx/yolov5
```
cd tensorrtx/yolov5
mkdir build
cd build
cmake ..
make
```
2. Move generated yolov5s.wts file to tensorrtx/yolov5 folder (example for YOLOv5s)
```
cp yolov5/yolov5s.wts tensorrtx/yolov5/build/yolov5s.wts
```
3. Convert to TensorRT model (yolov5s.engine file will be generated in tensorrtx/yolov5/build folder)
```
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
```
4. Create a custom yolo folder and copy generated file (example for YOLOv5s)
```
mkdir /opt/nvidia/deepstream/deepstream-5.1/sources/yolo
cp yolov5s.engine /opt/nvidia/deepstream/deepstream-5.1/sources/yolo/yolov5s.engine
```
<br />
Note: by default, yolov5 script generate model with batch size = 1 and FP16 mode.
```
#define USE_FP32 // set USE_INT8 or USE_FP16 or USE_FP32
#define DEVICE 0 // GPU id
#define NMS_THRESH 0.4
#define CONF_THRESH 0.5
#define BATCH_SIZE 1
```
Edit yolov5.cpp file before compile if you want to change this parameters.
##
### Compile nvdsinfer_custom_impl_Yolo
1. Run command
```
sudo chmod -R 777 /opt/nvidia/deepstream/deepstream-5.1/sources/
```
2. Donwload [my external/yolov5-5.0 folder](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external/yolov5-5.0) and move files to created yolo folder
3. Compile lib
* x86 platform
```
cd /opt/nvidia/deepstream/deepstream-5.1/sources/yolo
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
```
* Jetson platform
```
cd /opt/nvidia/deepstream/deepstream-5.1/sources/yolo
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Testing model
Use my edited [deepstream_app_config.txt](https://raw.githubusercontent.com/marcoslucianops/DeepStream-Yolo/master/external/yolov5-5.0/deepstream_app_config.txt) and [config_infer_primary.txt](https://raw.githubusercontent.com/marcoslucianops/DeepStream-Yolo/master/external/yolov5-5.0/config_infer_primary.txt) files available in [my external/yolov5-5.0 folder](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external/yolov5-5.0)
Run command
```
deepstream-app -c deepstream_app_config.txt
```
<br />
Note: based on selected model, edit config_infer_primary.txt file
For example, if you using YOLOv5x
```
model-engine-file=yolov5s.engine
```
to
```
model-engine-file=yolov5x.engine
```
##
To change NMS_THRESH, edit nvdsinfer_custom_impl_Yolo/nvdsparsebbox_Yolo.cpp file and recompile
```
#define kNMS_THRESH 0.45
```
To change CONF_THRESH, edit config_infer_primary.txt file
```
[class-attrs-all]
pre-cluster-threshold=0.25
```