185 lines
4.2 KiB
Markdown
185 lines
4.2 KiB
Markdown
# PP-YOLOE / PP-YOLOE+ usage
|
|
|
|
**NOTE**: You can use the develop branch of the PPYOLOE repo to convert all model versions.
|
|
|
|
* [Convert model](#convert-model)
|
|
* [Compile the lib](#compile-the-lib)
|
|
* [Edit the config_infer_primary_ppyoloe_plus file](#edit-the-config_infer_primary_ppyoloe_plus-file)
|
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
|
* [Testing the model](#testing-the-model)
|
|
|
|
##
|
|
|
|
### Convert model
|
|
|
|
#### 1. Download the PaddleDetection repo and install the requirements
|
|
|
|
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md
|
|
|
|
**NOTE**: It is recommended to use Python virtualenv.
|
|
|
|
#### 2. Copy conversor
|
|
|
|
Copy the `export_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the `PaddleDetection` folder.
|
|
|
|
#### 3. Download the model
|
|
|
|
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyoloe) releases (example for PP-YOLOE+_s)
|
|
|
|
```
|
|
wget https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams
|
|
```
|
|
|
|
**NOTE**: You can use your custom model.
|
|
|
|
#### 4. Convert model
|
|
|
|
Generate the ONNX model file (example for PP-YOLOE+_s)
|
|
|
|
```
|
|
pip3 install onnx onnxslim onnxruntime paddle2onnx
|
|
python3 export_ppyoloe.py -w ppyoloe_plus_crn_s_80e_coco.pdparams -c configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml --dynamic
|
|
```
|
|
|
|
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
|
|
|
|
```
|
|
--simplify
|
|
```
|
|
|
|
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
|
|
|
|
```
|
|
--dynamic
|
|
```
|
|
|
|
**NOTE**: To use static batch-size (example for batch-size = 4)
|
|
|
|
```
|
|
--batch 4
|
|
```
|
|
|
|
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 11.
|
|
|
|
```
|
|
--opset 12
|
|
```
|
|
|
|
#### 5. Copy generated files
|
|
|
|
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
|
|
|
|
##
|
|
|
|
### Compile the lib
|
|
|
|
1. Open the `DeepStream-Yolo` folder and compile the lib
|
|
|
|
2. Set the `CUDA_VER` according to your DeepStream version
|
|
|
|
```
|
|
export CUDA_VER=XY.Z
|
|
```
|
|
|
|
* x86 platform
|
|
|
|
```
|
|
DeepStream 7.1 = 12.6
|
|
DeepStream 7.0 / 6.4 = 12.2
|
|
DeepStream 6.3 = 12.1
|
|
DeepStream 6.2 = 11.8
|
|
DeepStream 6.1.1 = 11.7
|
|
DeepStream 6.1 = 11.6
|
|
DeepStream 6.0.1 / 6.0 = 11.4
|
|
DeepStream 5.1 = 11.1
|
|
```
|
|
|
|
* Jetson platform
|
|
|
|
```
|
|
DeepStream 7.1 = 12.6
|
|
DeepStream 7.0 / 6.4 = 12.2
|
|
DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
|
|
DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
|
|
```
|
|
|
|
3. Make the lib
|
|
|
|
```
|
|
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the config_infer_primary_ppyoloe_plus file
|
|
|
|
Edit the `config_infer_primary_ppyoloe_plus.txt` file according to your model (example for PP-YOLOE+_s with 80 classes)
|
|
|
|
```
|
|
[property]
|
|
...
|
|
onnx-file=ppyoloe_plus_crn_s_80e_coco.pdparams.onnx
|
|
...
|
|
num-detected-classes=80
|
|
...
|
|
parse-bbox-func-name=NvDsInferParseYolo
|
|
...
|
|
```
|
|
|
|
**NOTE**: If you are using the **legacy** model, you should edit the `config_infer_primary_ppyoloe.txt` file.
|
|
|
|
**NOTE**: The **PP-YOLOE+ and PP-YOLOE legacy** do not resize the input with padding. To get better accuracy, use
|
|
|
|
```
|
|
[property]
|
|
...
|
|
maintain-aspect-ratio=0
|
|
...
|
|
```
|
|
|
|
**NOTE**: The **PP-YOLOE+** uses zero mean normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
|
|
|
|
```
|
|
[property]
|
|
...
|
|
net-scale-factor=0.0039215697906911373
|
|
...
|
|
```
|
|
|
|
**NOTE**: The **PP-YOLOE legacy** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values.
|
|
|
|
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
|
|
|
|
```
|
|
[property]
|
|
...
|
|
net-scale-factor=0.0173520735727919486
|
|
offsets=123.675;116.28;103.53
|
|
...
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the deepstream_app_config file
|
|
|
|
```
|
|
...
|
|
[primary-gie]
|
|
...
|
|
config-file=config_infer_primary_ppyoloe_plus.txt
|
|
```
|
|
|
|
**NOTE**: If you are using the **legacy** model, you should edit it to `config_infer_primary_ppyoloe.txt`.
|
|
|
|
##
|
|
|
|
### Testing the model
|
|
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|
|
|
|
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
|
|
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|