Files
deepstream_yolo/docs/YOLOX.md
Marcos Luciano 1a9df997a4 Add YOLO-Seg
2023-09-07 00:25:56 -03:00

214 lines
4.4 KiB
Markdown

# YOLOX usage
**NOTE**: You can use the main branch of the YOLOX repo to convert all model versions.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yolox file](#edit-the-config_infer_primary_yolox-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLOX repo and install the requirements
```
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -r requirements.txt
python3 setup.py develop
pip3 install onnx onnxsim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_yolox.py` file from `DeepStream-Yolo/utils` directory to the `YOLOX` folder.
#### 3. Download the model
Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases/) releases (example for YOLOX-s)
```
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for YOLOX-s)
```
python3 export_yolox.py -w yolox_s.pth -c exps/default/yolox_s.py --dynamic
```
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
```
--simplify
```
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
```
--dynamic
```
**NOTE**: To use implicit batch-size (example for batch-size = 4)
```
--batch 4
```
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 11.
```
--opset 12
```
#### 5. Copy generated file
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.3 on x86 platform
```
CUDA_VER=12.1 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.2 on x86 platform
```
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1.1 on x86 platform
```
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 5.1 on x86 platform
```
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yolox file
Edit the `config_infer_primary_yolox.txt` file according to your model (example for YOLOX-s with 80 classes)
```
[property]
...
onnx-file=yolox_s.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
**NOTE**: If you are using the **legacy** model, you should edit the `config_infer_primary_yolox_legacy.txt` file.
**NOTE**: The **YOLOX and YOLOX legacy** resize the input with left/top padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
...
```
**NOTE**: The **YOLOX** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
```
[property]
...
net-scale-factor=1
...
```
**NOTE**: The **YOLOX legacy** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values.
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
```
[property]
...
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
...
```
**NOTE**: By default, the dynamic batch-size is set. To use implicit batch-size, uncomment the line
```
[property]
...
force-implicit-batch-dim=1
...
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_yolox.txt
```
**NOTE**: If you are using the **legacy** model, you should edit it to `config_infer_primary_yolox_legacy.txt`.
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.