4.7 KiB
YOLOv5
NVIDIA DeepStream SDK 5.1 configuration for YOLOv5 4.0 models
Thanks wang-xinyu and Ultralytics
- Requirements
- Convert PyTorch model to wts file
- Convert wts file to TensorRT model
- Compile nvdsinfer_custom_impl_Yolo
- Testing model
Requirements
-
Matplotlib (for Jetson plataform)
sudo apt-get install python3-matplotlib
- PyTorch (for Jetson plataform)
wget https://nvidia.box.com/shared/static/9eptse6jyly1ggt9axbja2yrmj6pbarc.whl -O torch-1.6.0-cp36-cp36m-linux_aarch64.whl
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev
pip3 install torch-1.6.0-cp36-cp36m-linux_aarch64.whl
- TorchVision (for Jetson platform)
git clone -b v0.7.0 https://github.com/pytorch/vision torchvision
sudo apt-get install libjpeg-dev zlib1g-dev python3-pip
cd torchvision
export BUILD_VERSION=0.7.0
sudo python3 setup.py install
Convert PyTorch model to wts file
- Download repositories
git clone -b yolov5-v4.0 https://github.com/wang-xinyu/tensorrtx.git
git clone -b v4.0 https://github.com/ultralytics/yolov5.git
- Download latest YoloV5 (YOLOv5s, YOLOv5m, YOLOv5l or YOLOv5x) weights to yolov5/weights directory (example for YOLOv5s)
wget https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt -P yolov5/weights
- Copy gen_wts.py file (from tensorrtx/yolov5 folder) to yolov5 (ultralytics) folder
cp tensorrtx/yolov5/gen_wts.py yolov5/gen_wts.py
- Generate wts file
cd yolov5
python3 gen_wts.py
yolov5s.wts file will be generated in yolov5 folder
Note: if you want to generate wts file to another YOLOv5 model (YOLOv5m, YOLOv5l or YOLOv5x), edit get_wts.py file changing yolov5s to your model name
model = torch.load('weights/yolov5s.pt', map_location=device)['model'].float() # load to FP32
model.to(device).eval()
f = open('yolov5s.wts', 'w')
Convert wts file to TensorRT model
- Build tensorrtx/yolov5
cd tensorrtx/yolov5
mkdir build
cd build
cmake ..
make
- Move generated yolov5s.wts file to tensorrtx/yolov5 folder (example for YOLOv5s)
cp yolov5/yolov5s.wts tensorrtx/yolov5/build/yolov5s.wts
- Convert to TensorRT model (yolov5s.engine file will be generated in tensorrtx/yolov5/build folder)
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
- Create a custom yolo folder and copy generated file (example for YOLOv5s)
mkdir /opt/nvidia/deepstream/deepstream-5.1/sources/yolo
cp yolov5s.engine /opt/nvidia/deepstream/deepstream-5.1/sources/yolo/yolov5s.engine
Note: by default, yolov5 script generate model with batch size = 1 and FP16 mode.
#define USE_FP32 // set USE_INT8 or USE_FP16 or USE_FP32
#define DEVICE 0 // GPU id
#define NMS_THRESH 0.4
#define CONF_THRESH 0.5
#define BATCH_SIZE 1
Edit yolov5.cpp file before compile if you want to change this parameters.
Compile nvdsinfer_custom_impl_Yolo
- Run command
sudo chmod -R 777 /opt/nvidia/deepstream/deepstream-5.1/sources/
-
Donwload my external/yolov5-4.0 folder and move files to created yolo folder
-
Compile lib
- x86 platform
cd /opt/nvidia/deepstream/deepstream-5.1/sources/yolo
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
- Jetson platform
cd /opt/nvidia/deepstream/deepstream-5.1/sources/yolo
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
Testing model
Use my edited deepstream_app_config.txt and config_infer_primary.txt files available in my external/yolov5-4.0 folder
Run command
deepstream-app -c deepstream_app_config.txt
Note: based on selected model, edit config_infer_primary.txt file
For example, if you using YOLOv5x
model-engine-file=yolov5s.engine
to
model-engine-file=yolov5x.engine
To change NMS_THRESH, edit nvdsinfer_custom_impl_Yolo/nvdsparsebbox_Yolo.cpp file and recompile
#define kNMS_THRESH 0.45
To change CONF_THRESH, edit config_infer_primary.txt file
[class-attrs-all]
pre-cluster-threshold=0.25