Files
deepstream_yolo/docs/YOLOv7.md
Marcos Luciano af20c2f72c Add benchmarks
2023-05-19 17:22:47 -03:00

172 lines
3.5 KiB
Markdown

# YOLOv7 usage
**NOTE**: The yaml file is not required.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_yoloV7 file](#edit-the-config_infer_primary_yolov7-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the YOLOv7 repo and install the requirements
```
git clone https://github.com/WongKinYiu/yolov7.git
cd yolov7
pip3 install -r requirements.txt
pip3 install onnx onnxsim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_yoloV7.py` file from `DeepStream-Yolo/utils` directory to the `yolov7` folder.
#### 3. Download the model
Download the `pt` file from [YOLOv7](https://github.com/WongKinYiu/yolov7/releases/) releases (example for YOLOv7)
```
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
```
**NOTE**: You can use your custom model.
#### 4. Reparameterize your model
[YOLOv7](https://github.com/WongKinYiu/yolov7/releases/) and its variants cannot be directly converted to engine file. Therefore, you will have to reparameterize your model using the code [here](https://github.com/WongKinYiu/yolov7/blob/main/tools/reparameterization.ipynb). Make sure to convert your custom checkpoints in yolov7 repository, and then save your reparmeterized checkpoints for conversion in the next step.
#### 5. Convert model
Generate the ONNX model file (example for YOLOv7)
```
python3 export_yoloV7.py -w yolov7.pt --simplify
```
**NOTE**: To convert a P6 model
```
--p6
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
#### 6. Copy generated files
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.2 on x86 platform
```
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1.1 on x86 platform
```
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yoloV7 file
Edit the `config_infer_primary_yoloV7.txt` file according to your model (example for YOLOv7 with 80 classes)
```
[property]
...
onnx-file=yolov7.onnx
model-engine-file=yolov7.onnx_b1_gpu0_fp32.engine
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
**NOTE**: The **YOLOv7** resizes the input with center padding. To get better accuracy, use
```
maintain-aspect-ratio=1
symmetric-padding=1
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_yoloV7.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.