161 lines
3.7 KiB
Markdown
161 lines
3.7 KiB
Markdown
# YOLOX usage
|
|
|
|
**NOTE**: You can use the main branch of the YOLOX repo to convert all model versions.
|
|
|
|
* [Convert model](#convert-model)
|
|
* [Compile the lib](#compile-the-lib)
|
|
* [Edit the config_infer_primary_yolox file](#edit-the-config_infer_primary_yolox-file)
|
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
|
* [Testing the model](#testing-the-model)
|
|
|
|
##
|
|
|
|
### Convert model
|
|
|
|
#### 1. Download the YOLOX repo and install the requirements
|
|
|
|
```
|
|
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
|
|
cd YOLOX
|
|
pip3 install -r requirements.txt
|
|
python3 setup.py develop
|
|
pip3 install onnx onnxsim onnxruntime
|
|
```
|
|
|
|
**NOTE**: It is recommended to use Python virtualenv.
|
|
|
|
#### 2. Copy conversor
|
|
|
|
Copy the `export_yolox.py` file from `DeepStream-Yolo/utils` directory to the `YOLOX` folder.
|
|
|
|
#### 3. Download the model
|
|
|
|
Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases/) releases (example for YOLOX-s)
|
|
|
|
```
|
|
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
|
|
```
|
|
|
|
**NOTE**: You can use your custom model.
|
|
|
|
#### 4. Convert model
|
|
|
|
Generate the ONNX model file (example for YOLOX-s)
|
|
|
|
```
|
|
python3 export_yolox.py -w yolox_s.pth -c exps/default/yolox_s.py --simplify
|
|
```
|
|
|
|
#### 5. Copy generated files
|
|
|
|
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
|
|
|
|
##
|
|
|
|
### Compile the lib
|
|
|
|
Open the `DeepStream-Yolo` folder and compile the lib
|
|
|
|
* DeepStream 6.2 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.1 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
|
|
|
```
|
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the config_infer_primary_yolox file
|
|
|
|
Edit the `config_infer_primary_yolox.txt` file according to your model (example for YOLOX-s with 80 classes)
|
|
|
|
```
|
|
[property]
|
|
...
|
|
onnx-file=yolox_s.onnx
|
|
model-engine-file=yolox_s.onnx_b1_gpu0_fp32.engine
|
|
...
|
|
num-detected-classes=80
|
|
...
|
|
parse-bbox-func-name=NvDsInferParseYolo
|
|
...
|
|
```
|
|
|
|
**NOTE**: If you use the **legacy** model, you should edit the `config_infer_primary_yolox_legacy.txt` file.
|
|
|
|
**NOTE**: The **YOLOX and YOLOX legacy** resize the input with left/top padding. To get better accuracy, use
|
|
|
|
```
|
|
maintain-aspect-ratio=1
|
|
symmetric-padding=0
|
|
```
|
|
|
|
**NOTE**: The **YOLOX** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values.
|
|
|
|
```
|
|
net-scale-factor=1
|
|
```
|
|
|
|
**NOTE**: The **YOLOX legacy** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values.
|
|
|
|
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
|
|
|
|
```
|
|
net-scale-factor=0.0173520735727919486
|
|
offsets=123.675;116.28;103.53
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the deepstream_app_config file
|
|
|
|
```
|
|
...
|
|
[primary-gie]
|
|
...
|
|
config-file=config_infer_primary_yolox.txt
|
|
```
|
|
|
|
**NOTE**: If you use the **legacy** model, you should edit it to `config_infer_primary_yolox_legacy.txt`.
|
|
|
|
##
|
|
|
|
### Testing the model
|
|
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|
|
|
|
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
|
|
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|