194 lines
3.6 KiB
Markdown
194 lines
3.6 KiB
Markdown
# RT-DETR Ultralytics usage
|
|
|
|
**NOTE**: Ultralytics (https://docs.ultralytics.com/models/rtdetr) version.
|
|
|
|
* [Convert model](#convert-model)
|
|
* [Compile the lib](#compile-the-lib)
|
|
* [Edit the config_infer_primary_rtdetr file](#edit-the-config_infer_primary_rtdetr-file)
|
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
|
* [Testing the model](#testing-the-model)
|
|
|
|
##
|
|
|
|
### Convert model
|
|
|
|
#### 1. Download the Ultralytics repo and install the requirements
|
|
|
|
```
|
|
git clone https://github.com/ultralytics/ultralytics.git
|
|
cd ultralytics
|
|
pip3 install -e .
|
|
pip3 install onnx onnxslim onnxruntime
|
|
```
|
|
|
|
**NOTE**: It is recommended to use Python virtualenv.
|
|
|
|
#### 2. Copy conversor
|
|
|
|
Copy the `export_rtdetr_ultralytics.py` file from `DeepStream-Yolo/utils` directory to the `ultralytics` folder.
|
|
|
|
#### 3. Download the model
|
|
|
|
Download the `pt` file from [Ultralytics](https://github.com/ultralytics/assets/releases/) releases (example for RT-DETR-L)
|
|
|
|
```
|
|
wget https://github.com/ultralytics/assets/releases/download/v8.2.0/rtdetr-l.pt
|
|
```
|
|
|
|
**NOTE**: You can use your custom model.
|
|
|
|
#### 4. Convert model
|
|
|
|
Generate the ONNX model file (example for RT-DETR-L)
|
|
|
|
```
|
|
python3 export_rtdetr_ultralytics.py -w rtdetr-l.pt --dynamic
|
|
```
|
|
|
|
**NOTE**: To change the inference size (defaut: 640)
|
|
|
|
```
|
|
-s SIZE
|
|
--size SIZE
|
|
-s HEIGHT WIDTH
|
|
--size HEIGHT WIDTH
|
|
```
|
|
|
|
Example for 1280
|
|
|
|
```
|
|
-s 1280
|
|
```
|
|
|
|
or
|
|
|
|
```
|
|
-s 1280 1280
|
|
```
|
|
|
|
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
|
|
|
|
```
|
|
--simplify
|
|
```
|
|
|
|
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
|
|
|
|
```
|
|
--dynamic
|
|
```
|
|
|
|
**NOTE**: To use static batch-size (example for batch-size = 4)
|
|
|
|
```
|
|
--batch 4
|
|
```
|
|
|
|
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 16.
|
|
|
|
```
|
|
--opset 12
|
|
```
|
|
|
|
#### 5. Copy generated files
|
|
|
|
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
|
|
|
|
##
|
|
|
|
### Compile the lib
|
|
|
|
1. Open the `DeepStream-Yolo` folder and compile the lib
|
|
|
|
2. Set the `CUDA_VER` according to your DeepStream version
|
|
|
|
```
|
|
export CUDA_VER=XY.Z
|
|
```
|
|
|
|
* x86 platform
|
|
|
|
```
|
|
DeepStream 7.1 = 12.6
|
|
DeepStream 7.0 / 6.4 = 12.2
|
|
DeepStream 6.3 = 12.1
|
|
DeepStream 6.2 = 11.8
|
|
DeepStream 6.1.1 = 11.7
|
|
DeepStream 6.1 = 11.6
|
|
DeepStream 6.0.1 / 6.0 = 11.4
|
|
DeepStream 5.1 = 11.1
|
|
```
|
|
|
|
* Jetson platform
|
|
|
|
```
|
|
DeepStream 7.1 = 12.6
|
|
DeepStream 7.0 / 6.4 = 12.2
|
|
DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4
|
|
DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
|
|
```
|
|
|
|
3. Make the lib
|
|
|
|
```
|
|
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the config_infer_primary_rtdetr file
|
|
|
|
Edit the `config_infer_primary_rtdetr.txt` file according to your model (example for RT-DETR-L with 80 classes)
|
|
|
|
```
|
|
[property]
|
|
...
|
|
onnx-file=rtdetr-l.pt.onnx
|
|
...
|
|
num-detected-classes=80
|
|
...
|
|
parse-bbox-func-name=NvDsInferParseYolo
|
|
...
|
|
```
|
|
|
|
**NOTE**: The **RT-DETR Ultralytics** do not resize the input with padding. To get better accuracy, use
|
|
|
|
```
|
|
[property]
|
|
...
|
|
maintain-aspect-ratio=0
|
|
...
|
|
```
|
|
|
|
**NOTE**: The **RT-DETR Ultralytics** do not require NMS. To get better accuracy, use
|
|
|
|
```
|
|
[property]
|
|
...
|
|
cluster-mode=4
|
|
...
|
|
```
|
|
|
|
##
|
|
|
|
### Edit the deepstream_app_config file
|
|
|
|
```
|
|
...
|
|
[primary-gie]
|
|
...
|
|
config-file=config_infer_primary_rtdetr.txt
|
|
```
|
|
|
|
##
|
|
|
|
### Testing the model
|
|
|
|
```
|
|
deepstream-app -c deepstream_app_config.txt
|
|
```
|
|
|
|
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
|
|
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|