Add PP-YOLOE support

This commit is contained in:
Marcos Luciano
2022-07-24 18:00:47 -03:00
parent d09879d557
commit a3782ed65e
51 changed files with 1812 additions and 600 deletions

View File

@@ -0,0 +1,25 @@
[property]
gpu-id=0
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
model-color-format=0
custom-network-config=ppyoloe_crn_s_400e_coco.cfg
model-file=ppyoloe_crn_s_400e_coco.wts
model-engine-file=model_b1_gpu0_fp32.engine
#int8-calib-file=calib.table
labelfile-path=labels.txt
batch-size=1
network-mode=0
num-detected-classes=80
interval=0
gie-unique-id=1
process-mode=1
network-type=0
cluster-mode=4
maintain-aspect-ratio=0
parse-bbox-func-name=NvDsInferParseYolo
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
engine-create-func-name=NvDsInferYoloCudaEngineGet
[class-attrs-all]
pre-cluster-threshold=0

115
docs/PPYOLOE.md Normal file
View File

@@ -0,0 +1,115 @@
# PP-YOLOE usage
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_ppyoloe file](#edit-the-config_infer_primary_ppyoloe-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the PaddleDetection repo and install the requirements
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/INSTALL.md
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `gen_wts_ppyoloe.py` file from `DeepStream-Yolo/utils` directory to the `PaddleDetection` folder.
#### 3. Download the model
Download the `pdparams` file from [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe) releases (example for PP-YOLOE-s)
```
wget https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_400e_coco.pdparams
```
**NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`ppyoloe_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly.
#### 4. Convert model
Generate the `cfg` and `wts` files (example for PP-YOLOE-s)
```
python3 gen_wts_ppyoloe.py -w ppyoloe_crn_s_400e_coco.pdparams -c configs/ppyoloe/ppyoloe_crn_s_400e_coco.yml
```
#### 5. Copy generated files
Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_yoloV5 file
Edit the `config_infer_primary_ppyoloe.txt` file according to your model (example for PP-YOLOE-s)
```
[property]
...
custom-network-config=ppyoloe_crn_s_400e_coco.cfg
model-file=ppyoloe_crn_s_400e_coco.wts
...
```
**NOTE**: The PP-YOLOE uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values.
Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225`
```
net-scale-factor=0.0173520735727919486
offsets=123.675;116.28;103.53
```
##
### Edit the deepstream_app_config.txt file
```
...
[primary-gie]
...
config-file=config_infer_primary_ppyoloe.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```

View File

@@ -22,7 +22,7 @@ cd yolor
pip3 install -r requirements.txt
```
**NOTE**: It is recommended to use a Python virtualenv.
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor

View File

@@ -22,7 +22,7 @@ cd yolov5
pip3 install -r requirements.txt
```
**NOTE**: It is recommended to use a Python virtualenv.
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor

View File

@@ -59,15 +59,21 @@ SRCFILES:= nvdsinfer_yolo_engine.cpp \
layers/shortcut_layer.cpp \
layers/route_layer.cpp \
layers/upsample_layer.cpp \
layers/maxpool_layer.cpp \
layers/pooling_layer.cpp \
layers/activation_layer.cpp \
layers/reorgv5_layer.cpp \
layers/reorg_layer.cpp \
layers/reduce_layer.cpp \
layers/shuffle_layer.cpp \
layers/softmax_layer.cpp \
layers/cls_layer.cpp \
layers/reg_layer.cpp \
utils.cpp \
yolo.cpp \
yoloForward.cu \
yoloForward_v2.cu \
yoloForward_nc.cu \
yoloForward_r.cu \
yoloForward_e.cu \
sortDetections.cu
ifeq ($(OPENCV), 1)

View File

@@ -5,114 +5,113 @@
#include "activation_layer.h"
nvinfer1::ILayer* activationLayer(
nvinfer1::ITensor* activationLayer(
int layerIdx,
std::string activation,
nvinfer1::ILayer* output,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
if (activation == "linear")
{
// Pass
output = input;
}
else if (activation == "relu")
{
nvinfer1::IActivationLayer* relu = network->addActivation(
*input, nvinfer1::ActivationType::kRELU);
nvinfer1::IActivationLayer* relu = network->addActivation(*input, nvinfer1::ActivationType::kRELU);
assert(relu != nullptr);
std::string reluLayerName = "relu_" + std::to_string(layerIdx);
relu->setName(reluLayerName.c_str());
output = relu;
output = relu->getOutput(0);
}
else if (activation == "sigmoid" || activation == "logistic")
{
nvinfer1::IActivationLayer* sigmoid = network->addActivation(
*input, nvinfer1::ActivationType::kSIGMOID);
nvinfer1::IActivationLayer* sigmoid = network->addActivation(*input, nvinfer1::ActivationType::kSIGMOID);
assert(sigmoid != nullptr);
std::string sigmoidLayerName = "sigmoid_" + std::to_string(layerIdx);
sigmoid->setName(sigmoidLayerName.c_str());
output = sigmoid;
output = sigmoid->getOutput(0);
}
else if (activation == "tanh")
{
nvinfer1::IActivationLayer* tanh = network->addActivation(
*input, nvinfer1::ActivationType::kTANH);
nvinfer1::IActivationLayer* tanh = network->addActivation(*input, nvinfer1::ActivationType::kTANH);
assert(tanh != nullptr);
std::string tanhLayerName = "tanh_" + std::to_string(layerIdx);
tanh->setName(tanhLayerName.c_str());
output = tanh;
output = tanh->getOutput(0);
}
else if (activation == "leaky")
{
nvinfer1::IActivationLayer* leaky = network->addActivation(
*input, nvinfer1::ActivationType::kLEAKY_RELU);
nvinfer1::IActivationLayer* leaky = network->addActivation(*input, nvinfer1::ActivationType::kLEAKY_RELU);
assert(leaky != nullptr);
leaky->setAlpha(0.1);
std::string leakyLayerName = "leaky_" + std::to_string(layerIdx);
leaky->setName(leakyLayerName.c_str());
output = leaky;
leaky->setAlpha(0.1);
output = leaky->getOutput(0);
}
else if (activation == "softplus")
{
nvinfer1::IActivationLayer* softplus = network->addActivation(
*input, nvinfer1::ActivationType::kSOFTPLUS);
nvinfer1::IActivationLayer* softplus = network->addActivation(*input, nvinfer1::ActivationType::kSOFTPLUS);
assert(softplus != nullptr);
std::string softplusLayerName = "softplus_" + std::to_string(layerIdx);
softplus->setName(softplusLayerName.c_str());
output = softplus;
output = softplus->getOutput(0);
}
else if (activation == "mish")
{
nvinfer1::IActivationLayer* softplus = network->addActivation(
*input, nvinfer1::ActivationType::kSOFTPLUS);
nvinfer1::IActivationLayer* softplus = network->addActivation(*input, nvinfer1::ActivationType::kSOFTPLUS);
assert(softplus != nullptr);
std::string softplusLayerName = "softplus_" + std::to_string(layerIdx);
softplus->setName(softplusLayerName.c_str());
nvinfer1::IActivationLayer* tanh = network->addActivation(
*softplus->getOutput(0), nvinfer1::ActivationType::kTANH);
nvinfer1::IActivationLayer* tanh = network->addActivation(*softplus->getOutput(0), nvinfer1::ActivationType::kTANH);
assert(tanh != nullptr);
std::string tanhLayerName = "tanh_" + std::to_string(layerIdx);
tanh->setName(tanhLayerName.c_str());
nvinfer1::IElementWiseLayer* mish = network->addElementWise(
*input, *tanh->getOutput(0),
nvinfer1::ElementWiseOperation::kPROD);
nvinfer1::IElementWiseLayer* mish
= network->addElementWise(*input, *tanh->getOutput(0), nvinfer1::ElementWiseOperation::kPROD);
assert(mish != nullptr);
std::string mishLayerName = "mish_" + std::to_string(layerIdx);
mish->setName(mishLayerName.c_str());
output = mish;
output = mish->getOutput(0);
}
else if (activation == "silu" || activation == "swish")
{
nvinfer1::IActivationLayer* sigmoid = network->addActivation(
*input, nvinfer1::ActivationType::kSIGMOID);
nvinfer1::IActivationLayer* sigmoid = network->addActivation(*input, nvinfer1::ActivationType::kSIGMOID);
assert(sigmoid != nullptr);
std::string sigmoidLayerName = "sigmoid_" + std::to_string(layerIdx);
sigmoid->setName(sigmoidLayerName.c_str());
nvinfer1::IElementWiseLayer* silu = network->addElementWise(
*input, *sigmoid->getOutput(0),
nvinfer1::ElementWiseOperation::kPROD);
nvinfer1::IElementWiseLayer* silu
= network->addElementWise(*input, *sigmoid->getOutput(0), nvinfer1::ElementWiseOperation::kPROD);
assert(silu != nullptr);
std::string siluLayerName = "silu_" + std::to_string(layerIdx);
silu->setName(siluLayerName.c_str());
output = silu;
output = silu->getOutput(0);
}
else if (activation == "hardsigmoid")
{
nvinfer1::IActivationLayer* hardsigmoid = network->addActivation(*input, nvinfer1::ActivationType::kHARD_SIGMOID);
assert(hardsigmoid != nullptr);
std::string hardsigmoidLayerName = "hardsigmoid_" + std::to_string(layerIdx);
hardsigmoid->setName(hardsigmoidLayerName.c_str());
hardsigmoid->setAlpha(1.0 / 6.0);
hardsigmoid->setBeta(0.5);
output = hardsigmoid->getOutput(0);
}
else if (activation == "hardswish")
{
nvinfer1::IActivationLayer* hard_sigmoid = network->addActivation(
*input, nvinfer1::ActivationType::kHARD_SIGMOID);
assert(hard_sigmoid != nullptr);
hard_sigmoid->setAlpha(1.0 / 6.0);
hard_sigmoid->setBeta(0.5);
std::string hardSigmoidLayerName = "hard_sigmoid_" + std::to_string(layerIdx);
hard_sigmoid->setName(hardSigmoidLayerName.c_str());
nvinfer1::IElementWiseLayer* hard_swish = network->addElementWise(
*input, *hard_sigmoid->getOutput(0),
nvinfer1::ElementWiseOperation::kPROD);
assert(hard_swish != nullptr);
std::string hardSwishLayerName = "hard_swish_" + std::to_string(layerIdx);
hard_swish->setName(hardSwishLayerName.c_str());
output = hard_swish;
nvinfer1::IActivationLayer* hardsigmoid = network->addActivation(*input, nvinfer1::ActivationType::kHARD_SIGMOID);
assert(hardsigmoid != nullptr);
std::string hardsigmoidLayerName = "hardsigmoid_" + std::to_string(layerIdx);
hardsigmoid->setName(hardsigmoidLayerName.c_str());
hardsigmoid->setAlpha(1.0 / 6.0);
hardsigmoid->setBeta(0.5);
nvinfer1::IElementWiseLayer* hardswish
= network->addElementWise(*input, *hardsigmoid->getOutput(0), nvinfer1::ElementWiseOperation::kPROD);
assert(hardswish != nullptr);
std::string hardswishLayerName = "hardswish_" + std::to_string(layerIdx);
hardswish->setName(hardswishLayerName.c_str());
output = hardswish->getOutput(0);
}
else
{

View File

@@ -6,18 +6,14 @@
#ifndef __ACTIVATION_LAYER_H__
#define __ACTIVATION_LAYER_H__
#include <string>
#include <cassert>
#include <iostream>
#include "NvInfer.h"
#include "activation_layer.h"
nvinfer1::ILayer* activationLayer(
nvinfer1::ITensor* activationLayer(
int layerIdx,
std::string activation,
nvinfer1::ILayer* output,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);

View File

@@ -6,7 +6,7 @@
#include <math.h>
#include "batchnorm_layer.h"
nvinfer1::ILayer* batchnormLayer(
nvinfer1::ITensor* batchnormLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
@@ -17,6 +17,8 @@ nvinfer1::ILayer* batchnormLayer(
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "batchnorm");
assert(block.find("filters") != block.end());
@@ -28,7 +30,8 @@ nvinfer1::ILayer* batchnormLayer(
std::vector<float> bnRunningMean;
std::vector<float> bnRunningVar;
if (weightsType == "weights") {
if (weightsType == "weights")
{
for (int i = 0; i < filters; ++i)
{
bnBiases.push_back(weights[weightPtr]);
@@ -50,7 +53,8 @@ nvinfer1::ILayer* batchnormLayer(
weightPtr++;
}
}
else {
else
{
for (int i = 0; i < filters; ++i)
{
bnWeights.push_back(weights[weightPtr]);
@@ -79,35 +83,27 @@ nvinfer1::ILayer* batchnormLayer(
nvinfer1::Weights power{nvinfer1::DataType::kFLOAT, nullptr, size};
float* shiftWt = new float[size];
for (int i = 0; i < size; ++i)
{
shiftWt[i]
= bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
}
shiftWt[i] = bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
shift.values = shiftWt;
float* scaleWt = new float[size];
for (int i = 0; i < size; ++i)
{
scaleWt[i] = bnWeights.at(i) / bnRunningVar[i];
}
scale.values = scaleWt;
float* powerWt = new float[size];
for (int i = 0; i < size; ++i)
{
powerWt[i] = 1.0;
}
power.values = powerWt;
trtWeights.push_back(shift);
trtWeights.push_back(scale);
trtWeights.push_back(power);
nvinfer1::IScaleLayer* bn = network->addScale(
*input, nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(bn != nullptr);
std::string bnLayerName = "batch_norm_" + std::to_string(layerIdx);
bn->setName(bnLayerName.c_str());
nvinfer1::ILayer* output = bn;
nvinfer1::IScaleLayer* batchnorm = network->addScale(*input, nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(batchnorm != nullptr);
std::string batchnormLayerName = "batchnorm_" + std::to_string(layerIdx);
batchnorm->setName(batchnormLayerName.c_str());
output = batchnorm->getOutput(0);
output = activationLayer(layerIdx, activation, output, output->getOutput(0), network);
output = activationLayer(layerIdx, activation, output, network);
assert(output != nullptr);
return output;

View File

@@ -13,7 +13,7 @@
#include "activation_layer.h"
nvinfer1::ILayer* batchnormLayer(
nvinfer1::ITensor* batchnormLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,

View File

@@ -5,27 +5,32 @@
#include "channels_layer.h"
nvinfer1::ILayer* channelsLayer(
std::string type,
nvinfer1::ITensor* channelsLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::ITensor* implicitTensor,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ILayer* output;
nvinfer1::ITensor* output;
if (type == "shift") {
nvinfer1::IElementWiseLayer* ew = network->addElementWise(
*input, *implicitTensor,
nvinfer1::ElementWiseOperation::kSUM);
assert(ew != nullptr);
output = ew;
assert(block.at("type") == "shift_channels" || block.at("type") == "control_channels");
if (block.at("type") == "shift_channels") {
nvinfer1::IElementWiseLayer* shift
= network->addElementWise(*input, *implicitTensor, nvinfer1::ElementWiseOperation::kSUM);
assert(shift != nullptr);
std::string shiftLayerName = "shift_channels_" + std::to_string(layerIdx);
shift->setName(shiftLayerName.c_str());
output = shift->getOutput(0);
}
else if (type == "control") {
nvinfer1::IElementWiseLayer* ew = network->addElementWise(
*input, *implicitTensor,
nvinfer1::ElementWiseOperation::kPROD);
assert(ew != nullptr);
output = ew;
else if (block.at("type") == "control_channels") {
nvinfer1::IElementWiseLayer* control
= network->addElementWise(*input, *implicitTensor, nvinfer1::ElementWiseOperation::kPROD);
assert(control != nullptr);
std::string controlLayerName = "control_channels_" + std::to_string(layerIdx);
control->setName(controlLayerName.c_str());
output = control->getOutput(0);
}
return output;

View File

@@ -11,8 +11,9 @@
#include "NvInfer.h"
nvinfer1::ILayer* channelsLayer(
std::string type,
nvinfer1::ITensor* channelsLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::ITensor* implicitTensor,
nvinfer1::INetworkDefinition* network);

View File

@@ -0,0 +1,29 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "cls_layer.h"
nvinfer1::ITensor* clsLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "cls");
nvinfer1::IShuffleLayer* shuffle = network->addShuffle(*input);
assert(shuffle != nullptr);
std::string shuffleLayerName = "shuffle_" + std::to_string(layerIdx);
shuffle->setName(shuffleLayerName.c_str());
nvinfer1::Permutation permutation;
permutation.order[0] = 1;
permutation.order[1] = 0;
shuffle->setFirstTranspose(permutation);
output = shuffle->getOutput(0);
return output;
}

View File

@@ -3,15 +3,15 @@
* https://www.github.com/marcoslucianops
*/
#ifndef __MAXPOOL_LAYER_H__
#define __MAXPOOL_LAYER_H__
#ifndef __CLS_LAYER_H__
#define __CLS_LAYER_H__
#include <map>
#include <cassert>
#include "NvInfer.h"
nvinfer1::ILayer* maxpoolLayer(
nvinfer1::ITensor* clsLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,

View File

@@ -6,7 +6,7 @@
#include <math.h>
#include "convolutional_layer.h"
nvinfer1::ILayer* convolutionalLayer(
nvinfer1::ITensor* convolutionalLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
@@ -18,6 +18,8 @@ nvinfer1::ILayer* convolutionalLayer(
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "convolutional");
assert(block.find("filters") != block.end());
assert(block.find("pad") != block.end());
@@ -40,14 +42,10 @@ nvinfer1::ILayer* convolutionalLayer(
int groups = 1;
if (block.find("groups") != block.end())
{
groups = std::stoi(block.at("groups"));
}
if (block.find("bias") != block.end())
{
bias = std::stoi(block.at("bias"));
}
int pad;
if (padding)
@@ -63,7 +61,8 @@ nvinfer1::ILayer* convolutionalLayer(
nvinfer1::Weights convWt{nvinfer1::DataType::kFLOAT, nullptr, size};
nvinfer1::Weights convBias{nvinfer1::DataType::kFLOAT, nullptr, bias};
if (weightsType == "weights") {
if (weightsType == "weights")
{
if (batchNormalize == false)
{
float* val;
@@ -120,7 +119,8 @@ nvinfer1::ILayer* convolutionalLayer(
trtWeights.push_back(convBias);
}
}
else {
else
{
if (batchNormalize == false)
{
float* val = new float[size];
@@ -177,20 +177,18 @@ nvinfer1::ILayer* convolutionalLayer(
}
}
nvinfer1::IConvolutionLayer* conv = network->addConvolutionNd(
*input, filters, nvinfer1::DimsHW{kernelSize, kernelSize}, convWt, convBias);
nvinfer1::IConvolutionLayer* conv
= network->addConvolutionNd(*input, filters, nvinfer1::Dims{2, {kernelSize, kernelSize}}, convWt, convBias);
assert(conv != nullptr);
std::string convLayerName = "conv_" + std::to_string(layerIdx);
conv->setName(convLayerName.c_str());
conv->setStrideNd(nvinfer1::DimsHW{stride, stride});
conv->setPaddingNd(nvinfer1::DimsHW{pad, pad});
conv->setStrideNd(nvinfer1::Dims{2, {stride, stride}});
conv->setPaddingNd(nvinfer1::Dims{2, {pad, pad}});
if (block.find("groups") != block.end())
{
conv->setNbGroups(groups);
}
nvinfer1::ILayer* output = conv;
output = conv->getOutput(0);
if (batchNormalize == true)
{
@@ -200,36 +198,28 @@ nvinfer1::ILayer* convolutionalLayer(
nvinfer1::Weights power{nvinfer1::DataType::kFLOAT, nullptr, size};
float* shiftWt = new float[size];
for (int i = 0; i < size; ++i)
{
shiftWt[i]
= bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
}
shiftWt[i] = bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
shift.values = shiftWt;
float* scaleWt = new float[size];
for (int i = 0; i < size; ++i)
{
scaleWt[i] = bnWeights.at(i) / bnRunningVar[i];
}
scale.values = scaleWt;
float* powerWt = new float[size];
for (int i = 0; i < size; ++i)
{
powerWt[i] = 1.0;
}
power.values = powerWt;
trtWeights.push_back(shift);
trtWeights.push_back(scale);
trtWeights.push_back(power);
nvinfer1::IScaleLayer* bn = network->addScale(
*output->getOutput(0), nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(bn != nullptr);
std::string bnLayerName = "batch_norm_" + std::to_string(layerIdx);
bn->setName(bnLayerName.c_str());
output = bn;
nvinfer1::IScaleLayer* batchnorm = network->addScale(*output, nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(batchnorm != nullptr);
std::string batchnormLayerName = "batchnorm_" + std::to_string(layerIdx);
batchnorm->setName(batchnormLayerName.c_str());
output = batchnorm->getOutput(0);
}
output = activationLayer(layerIdx, activation, output, output->getOutput(0), network);
output = activationLayer(layerIdx, activation, output, network);
assert(output != nullptr);
return output;

View File

@@ -13,7 +13,7 @@
#include "activation_layer.h"
nvinfer1::ILayer* convolutionalLayer(
nvinfer1::ITensor* convolutionalLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,

View File

@@ -5,17 +5,25 @@
#include "implicit_layer.h"
nvinfer1::ILayer* implicitLayer(
int channels,
nvinfer1::ITensor* implicitLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
std::vector<nvinfer1::Weights>& trtWeights,
int& weightPtr,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::Weights convWt{nvinfer1::DataType::kFLOAT, nullptr, channels};
nvinfer1::ITensor* output;
float* val = new float[channels];
for (int i = 0; i < channels; ++i)
assert(block.at("type") == "implicit_add" || block.at("type") == "implicit_mul");
assert(block.find("filters") != block.end());
int filters = std::stoi(block.at("filters"));
nvinfer1::Weights convWt{nvinfer1::DataType::kFLOAT, nullptr, filters};
float* val = new float[filters];
for (int i = 0; i < filters; ++i)
{
val[i] = weights[weightPtr];
weightPtr++;
@@ -23,8 +31,11 @@ nvinfer1::ILayer* implicitLayer(
convWt.values = val;
trtWeights.push_back(convWt);
nvinfer1::IConstantLayer* implicit = network->addConstant(nvinfer1::Dims3{static_cast<int>(channels), 1, 1}, convWt);
nvinfer1::IConstantLayer* implicit = network->addConstant(nvinfer1::Dims{3, {filters, 1, 1}}, convWt);
assert(implicit != nullptr);
std::string implicitLayerName = block.at("type") + "_" + std::to_string(layerIdx);
implicit->setName(implicitLayerName.c_str());
output = implicit->getOutput(0);
return implicit;
return output;
}

View File

@@ -12,8 +12,9 @@
#include "NvInfer.h"
nvinfer1::ILayer* implicitLayer(
int channels,
nvinfer1::ITensor* implicitLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
std::vector<nvinfer1::Weights>& trtWeights,
int& weightPtr,

View File

@@ -1,35 +0,0 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "maxpool_layer.h"
nvinfer1::ILayer* maxpoolLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
assert(block.at("type") == "maxpool");
assert(block.find("size") != block.end());
assert(block.find("stride") != block.end());
int size = std::stoi(block.at("size"));
int stride = std::stoi(block.at("stride"));
nvinfer1::IPoolingLayer* pool
= network->addPoolingNd(*input, nvinfer1::PoolingType::kMAX, nvinfer1::Dims{2, {size, size}});
assert(pool);
std::string maxpoolLayerName = "maxpool_" + std::to_string(layerIdx);
pool->setStrideNd(nvinfer1::Dims{2, {stride, stride}});
pool->setPaddingNd(nvinfer1::Dims{2, {(size - 1) / 2, (size - 1) / 2}});
if (size == 2 && stride == 1)
{
pool->setPrePadding(nvinfer1::Dims{2, {0, 0}});
pool->setPostPadding(nvinfer1::Dims{2, {1, 1}});
}
pool->setName(maxpoolLayerName.c_str());
return pool;
}

View File

@@ -0,0 +1,57 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "pooling_layer.h"
nvinfer1::ITensor* poolingLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "maxpool" || block.at("type") == "avgpool");
if (block.at("type") == "maxpool")
{
assert(block.find("size") != block.end());
assert(block.find("stride") != block.end());
int size = std::stoi(block.at("size"));
int stride = std::stoi(block.at("stride"));
nvinfer1::IPoolingLayer* maxpool
= network->addPoolingNd(*input, nvinfer1::PoolingType::kMAX, nvinfer1::Dims{2, {size, size}});
assert(maxpool != nullptr);
std::string maxpoolLayerName = "maxpool_" + std::to_string(layerIdx);
maxpool->setName(maxpoolLayerName.c_str());
maxpool->setStrideNd(nvinfer1::Dims{2, {stride, stride}});
maxpool->setPaddingNd(nvinfer1::Dims{2, {(size - 1) / 2, (size - 1) / 2}});
if (size == 2 && stride == 1)
{
maxpool->setPrePadding(nvinfer1::Dims{2, {0, 0}});
maxpool->setPostPadding(nvinfer1::Dims{2, {1, 1}});
}
output = maxpool->getOutput(0);
}
else if (block.at("type") == "avgpool")
{
nvinfer1::Dims inputDims = input->getDimensions();
nvinfer1::IPoolingLayer* avgpool = network->addPoolingNd(
*input, nvinfer1::PoolingType::kAVERAGE, nvinfer1::Dims{2, {inputDims.d[1], inputDims.d[2]}});
assert(avgpool != nullptr);
std::string avgpoolLayerName = "avgpool_" + std::to_string(layerIdx);
avgpool->setName(avgpoolLayerName.c_str());
output = avgpool->getOutput(0);
}
else
{
std::cerr << "Pooling not supported: " << block.at("type") << std::endl;
std::abort();
}
return output;
}

View File

@@ -0,0 +1,21 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef __POOLING_LAYER_H__
#define __POOLING_LAYER_H__
#include <map>
#include <cassert>
#include <iostream>
#include "NvInfer.h"
nvinfer1::ITensor* poolingLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -0,0 +1,58 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "reduce_layer.h"
nvinfer1::ITensor* reduceLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "reduce");
assert(block.find("mode") != block.end());
assert(block.find("axes") != block.end());
std::string mode = block.at("mode");
nvinfer1::ReduceOperation operation;
if (mode == "mean")
operation = nvinfer1::ReduceOperation::kAVG;
std::string strAxes = block.at("axes");
std::vector<int32_t> axes;
size_t lastPos = 0, pos = 0;
while ((pos = strAxes.find(',', lastPos)) != std::string::npos)
{
int vL = std::stoi(trim(strAxes.substr(lastPos, pos - lastPos)));
axes.push_back(vL);
lastPos = pos + 1;
}
if (lastPos < strAxes.length())
{
std::string lastV = trim(strAxes.substr(lastPos));
if (!lastV.empty())
axes.push_back(std::stoi(lastV));
}
assert(!axes.empty());
uint32_t axisMask = 0;
for (int axis : axes)
axisMask |= 1 << axis;
bool keepDims = false;
if (block.find("keep") != block.end())
keepDims = std::stoi(block.at("keep")) == 1 ? true : false;
nvinfer1::IReduceLayer* reduce = network->addReduce(*input, operation, axisMask, keepDims);
assert(reduce != nullptr);
std::string reduceLayerName = "reduce_" + std::to_string(layerIdx);
reduce->setName(reduceLayerName.c_str());
output = reduce->getOutput(0);
return output;
}

View File

@@ -0,0 +1,18 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef __REDUCE_LAYER_H__
#define __REDUCE_LAYER_H__
#include "NvInfer.h"
#include "../utils.h"
nvinfer1::ITensor* reduceLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -0,0 +1,113 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "reg_layer.h"
nvinfer1::ITensor* regLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
std::vector<nvinfer1::Weights>& trtWeights,
int& weightPtr,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "reg");
nvinfer1::IShuffleLayer* shuffle = network->addShuffle(*input);
assert(shuffle != nullptr);
std::string shuffleLayerName = "shuffle_" + std::to_string(layerIdx);
shuffle->setName(shuffleLayerName.c_str());
nvinfer1::Permutation permutation;
permutation.order[0] = 1;
permutation.order[1] = 0;
shuffle->setFirstTranspose(permutation);
output = shuffle->getOutput(0);
nvinfer1::Dims shuffleDims = output->getDimensions();
nvinfer1::ISliceLayer* sliceLt = network->addSlice(
*output, nvinfer1::Dims{2, {0, 0}}, nvinfer1::Dims{2, {shuffleDims.d[0], 2}}, nvinfer1::Dims{2, {1, 1}});
assert(sliceLt != nullptr);
std::string sliceLtLayerName = "slice_lt_" + std::to_string(layerIdx);
sliceLt->setName(sliceLtLayerName.c_str());
nvinfer1::ITensor* lt = sliceLt->getOutput(0);
nvinfer1::ISliceLayer* sliceRb = network->addSlice(
*output, nvinfer1::Dims{2, {0, 2}}, nvinfer1::Dims{2, {shuffleDims.d[0], 2}}, nvinfer1::Dims{2, {1, 1}});
assert(sliceRb != nullptr);
std::string sliceRbLayerName = "slice_rb_" + std::to_string(layerIdx);
sliceRb->setName(sliceRbLayerName.c_str());
nvinfer1::ITensor* rb = sliceRb->getOutput(0);
int channels = shuffleDims.d[0] * 2;
nvinfer1::Weights anchorPointsWt{nvinfer1::DataType::kFLOAT, nullptr, channels};
float* val = new float[channels];
for (int i = 0; i < channels; ++i)
{
val[i] = weights[weightPtr];
weightPtr++;
}
anchorPointsWt.values = val;
trtWeights.push_back(anchorPointsWt);
nvinfer1::IConstantLayer* anchorPoints = network->addConstant(nvinfer1::Dims{2, {shuffleDims.d[0], 2}}, anchorPointsWt);
assert(anchorPoints != nullptr);
std::string anchorPointsLayerName = "anchor_points_" + std::to_string(layerIdx);
anchorPoints->setName(anchorPointsLayerName.c_str());
nvinfer1::ITensor* anchorPointsTensor = anchorPoints->getOutput(0);
nvinfer1::IElementWiseLayer* x1y1
= network->addElementWise(*anchorPointsTensor, *lt, nvinfer1::ElementWiseOperation::kSUB);
assert(x1y1 != nullptr);
std::string x1y1LayerName = "x1y1_" + std::to_string(layerIdx);
x1y1->setName(x1y1LayerName.c_str());
nvinfer1::ITensor* x1y1Tensor = x1y1->getOutput(0);
nvinfer1::IElementWiseLayer* x2y2
= network->addElementWise(*rb, *anchorPointsTensor, nvinfer1::ElementWiseOperation::kSUM);
assert(x2y2 != nullptr);
std::string x2y2LayerName = "x2y2_" + std::to_string(layerIdx);
x2y2->setName(x2y2LayerName.c_str());
nvinfer1::ITensor* x2y2Tensor = x2y2->getOutput(0);
std::vector<nvinfer1::ITensor*> concatInputs;
concatInputs.push_back(x1y1Tensor);
concatInputs.push_back(x2y2Tensor);
nvinfer1::IConcatenationLayer* concat = network->addConcatenation(concatInputs.data(), concatInputs.size());
assert(concat != nullptr);
std::string concatLayerName = "concat_" + std::to_string(layerIdx);
concat->setName(concatLayerName.c_str());
concat->setAxis(1);
output = concat->getOutput(0);
channels = shuffleDims.d[0];
nvinfer1::Weights stridePointsWt{nvinfer1::DataType::kFLOAT, nullptr, channels};
val = new float[channels];
for (int i = 0; i < channels; ++i)
{
val[i] = weights[weightPtr];
weightPtr++;
}
stridePointsWt.values = val;
trtWeights.push_back(stridePointsWt);
nvinfer1::IConstantLayer* stridePoints = network->addConstant(nvinfer1::Dims{2, {shuffleDims.d[0], 1}}, stridePointsWt);
assert(stridePoints != nullptr);
std::string stridePointsLayerName = "stride_points_" + std::to_string(layerIdx);
stridePoints->setName(stridePointsLayerName.c_str());
nvinfer1::ITensor* stridePointsTensor = stridePoints->getOutput(0);
nvinfer1::IElementWiseLayer* pred
= network->addElementWise(*output, *stridePointsTensor, nvinfer1::ElementWiseOperation::kPROD);
assert(pred != nullptr);
std::string predLayerName = "pred_" + std::to_string(layerIdx);
pred->setName(predLayerName.c_str());
output = pred->getOutput(0);
return output;
}

View File

@@ -0,0 +1,24 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef __REG_LAYER_H__
#define __REG_LAYER_H__
#include <map>
#include <vector>
#include <cassert>
#include "NvInfer.h"
nvinfer1::ITensor* regLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
std::vector<nvinfer1::Weights>& trtWeights,
int& weightPtr,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -0,0 +1,62 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "reorg_layer.h"
nvinfer1::ITensor* reorgLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "reorg");
nvinfer1::Dims inputDims = input->getDimensions();
nvinfer1::ISliceLayer *slice1 = network->addSlice(
*input, nvinfer1::Dims{3, {0, 0, 0}}, nvinfer1::Dims{3, {inputDims.d[0], inputDims.d[1] / 2, inputDims.d[2] / 2}},
nvinfer1::Dims{3, {1, 2, 2}});
assert(slice1 != nullptr);
std::string slice1LayerName = "slice1_" + std::to_string(layerIdx);
slice1->setName(slice1LayerName.c_str());
nvinfer1::ISliceLayer *slice2 = network->addSlice(
*input, nvinfer1::Dims{3, {0, 0, 1}}, nvinfer1::Dims{3, {inputDims.d[0], inputDims.d[1] / 2, inputDims.d[2] / 2}},
nvinfer1::Dims{3, {1, 2, 2}});
assert(slice2 != nullptr);
std::string slice2LayerName = "slice2_" + std::to_string(layerIdx);
slice2->setName(slice2LayerName.c_str());
nvinfer1::ISliceLayer *slice3 = network->addSlice(
*input, nvinfer1::Dims{3, {0, 1, 0}}, nvinfer1::Dims{3, {inputDims.d[0], inputDims.d[1] / 2, inputDims.d[2] / 2}},
nvinfer1::Dims{3, {1, 2, 2}});
assert(slice3 != nullptr);
std::string slice3LayerName = "slice3_" + std::to_string(layerIdx);
slice3->setName(slice3LayerName.c_str());
nvinfer1::ISliceLayer *slice4 = network->addSlice(
*input, nvinfer1::Dims{3, {0, 1, 1}}, nvinfer1::Dims{3, {inputDims.d[0], inputDims.d[1] / 2, inputDims.d[2] / 2}},
nvinfer1::Dims{3, {1, 2, 2}});
assert(slice4 != nullptr);
std::string slice4LayerName = "slice4_" + std::to_string(layerIdx);
slice4->setName(slice4LayerName.c_str());
std::vector<nvinfer1::ITensor*> concatInputs;
concatInputs.push_back(slice1->getOutput(0));
concatInputs.push_back(slice2->getOutput(0));
concatInputs.push_back(slice3->getOutput(0));
concatInputs.push_back(slice4->getOutput(0));
nvinfer1::IConcatenationLayer* concat = network->addConcatenation(concatInputs.data(), concatInputs.size());
assert(concat != nullptr);
std::string concatLayerName = "concat_" + std::to_string(layerIdx);
concat->setName(concatLayerName.c_str());
concat->setAxis(0);
output = concat->getOutput(0);
return output;
}

View File

@@ -12,8 +12,9 @@
#include "NvInfer.h"
nvinfer1::ILayer* reorgV5Layer(
nvinfer1::ITensor* reorgLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);

View File

@@ -1,62 +0,0 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "reorgv5_layer.h"
nvinfer1::ILayer* reorgV5Layer(
int layerIdx,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::Dims prevTensorDims = input->getDimensions();
nvinfer1::ISliceLayer *slice1 = network->addSlice(
*input,
nvinfer1::Dims3{0, 0, 0},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice1 != nullptr);
std::string slice1LayerName = "slice1_" + std::to_string(layerIdx);
slice1->setName(slice1LayerName.c_str());
nvinfer1::ISliceLayer *slice2 = network->addSlice(
*input,
nvinfer1::Dims3{0, 1, 0},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice2 != nullptr);
std::string slice2LayerName = "slice2_" + std::to_string(layerIdx);
slice2->setName(slice2LayerName.c_str());
nvinfer1::ISliceLayer *slice3 = network->addSlice(
*input,
nvinfer1::Dims3{0, 0, 1},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice3 != nullptr);
std::string slice3LayerName = "slice3_" + std::to_string(layerIdx);
slice3->setName(slice3LayerName.c_str());
nvinfer1::ISliceLayer *slice4 = network->addSlice(
*input,
nvinfer1::Dims3{0, 1, 1},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice4 != nullptr);
std::string slice4LayerName = "slice4_" + std::to_string(layerIdx);
slice4->setName(slice4LayerName.c_str());
std::vector<nvinfer1::ITensor*> concatInputs;
concatInputs.push_back (slice1->getOutput(0));
concatInputs.push_back (slice2->getOutput(0));
concatInputs.push_back (slice3->getOutput(0));
concatInputs.push_back (slice4->getOutput(0));
nvinfer1::IConcatenationLayer* concat =
network->addConcatenation(concatInputs.data(), concatInputs.size());
assert(concat != nullptr);
return concat;
}

View File

@@ -5,58 +5,73 @@
#include "route_layer.h"
nvinfer1::ILayer* routeLayer(
nvinfer1::ITensor* routeLayer(
int layerIdx,
std::string& layers,
std::map<std::string, std::string>& block,
std::vector<nvinfer1::ITensor*> tensorOutputs,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "route");
assert(block.find("layers") != block.end());
std::string strLayers = block.at("layers");
std::vector<int> idxLayers;
size_t lastPos = 0, pos = 0;
while ((pos = strLayers.find(',', lastPos)) != std::string::npos) {
while ((pos = strLayers.find(',', lastPos)) != std::string::npos)
{
int vL = std::stoi(trim(strLayers.substr(lastPos, pos - lastPos)));
idxLayers.push_back(vL);
lastPos = pos + 1;
}
if (lastPos < strLayers.length()) {
if (lastPos < strLayers.length())
{
std::string lastV = trim(strLayers.substr(lastPos));
if (!lastV.empty()) {
if (!lastV.empty())
idxLayers.push_back(std::stoi(lastV));
}
}
assert (!idxLayers.empty());
std::vector<nvinfer1::ITensor*> concatInputs;
for (int idxLayer : idxLayers) {
if (idxLayer < 0) {
idxLayer = tensorOutputs.size() + idxLayer;
}
assert (idxLayer >= 0 && idxLayer < (int)tensorOutputs.size());
concatInputs.push_back (tensorOutputs[idxLayer]);
for (uint i = 0; i < idxLayers.size(); ++i)
{
if (idxLayers[i] < 0)
idxLayers[i] = tensorOutputs.size() + idxLayers[i];
assert (idxLayers[i] >= 0 && idxLayers[i] < (int)tensorOutputs.size());
concatInputs.push_back(tensorOutputs[idxLayers[i]]);
if (i < idxLayers.size() - 1)
layers += std::to_string(idxLayers[i]) + ", ";
}
layers += std::to_string(idxLayers[idxLayers.size() - 1]);
nvinfer1::IConcatenationLayer* concat =
network->addConcatenation(concatInputs.data(), concatInputs.size());
int axis = 0;
if (block.find("axis") != block.end())
axis = std::stoi(block.at("axis"));
if (axis < 0)
axis = concatInputs[0]->getDimensions().nbDims + axis;
nvinfer1::IConcatenationLayer* concat = network->addConcatenation(concatInputs.data(), concatInputs.size());
assert(concat != nullptr);
std::string concatLayerName = "route_" + std::to_string(layerIdx - 1);
std::string concatLayerName = "route_" + std::to_string(layerIdx);
concat->setName(concatLayerName.c_str());
concat->setAxis(0);
concat->setAxis(axis);
output = concat->getOutput(0);
nvinfer1::ILayer* output = concat;
if (block.find("groups") != block.end()) {
nvinfer1::Dims prevTensorDims = output->getOutput(0)->getDimensions();
if (block.find("groups") != block.end())
{
nvinfer1::Dims prevTensorDims = output->getDimensions();
int groups = stoi(block.at("groups"));
int group_id = stoi(block.at("group_id"));
int startSlice = (prevTensorDims.d[0] / groups) * group_id;
int channelSlice = (prevTensorDims.d[0] / groups);
nvinfer1::ISliceLayer* sl = network->addSlice(
*output->getOutput(0),
nvinfer1::Dims3{startSlice, 0, 0},
nvinfer1::Dims3{channelSlice, prevTensorDims.d[1], prevTensorDims.d[2]},
nvinfer1::Dims3{1, 1, 1});
assert(sl != nullptr);
output = sl;
nvinfer1::ISliceLayer* slice = network->addSlice(
*output, nvinfer1::Dims{3, {startSlice, 0, 0}},
nvinfer1::Dims{3, {channelSlice, prevTensorDims.d[1], prevTensorDims.d[2]}}, nvinfer1::Dims{3, {1, 1, 1}});
assert(slice != nullptr);
std::string sliceLayerName = "slice_" + std::to_string(layerIdx);
slice->setName(sliceLayerName.c_str());
output = slice->getOutput(0);
}
return output;

View File

@@ -9,8 +9,9 @@
#include "NvInfer.h"
#include "../utils.h"
nvinfer1::ILayer* routeLayer(
nvinfer1::ITensor* routeLayer(
int layerIdx,
std::string& layers,
std::map<std::string, std::string>& block,
std::vector<nvinfer1::ITensor*> tensorOutputs,
nvinfer1::INetworkDefinition* network);

View File

@@ -5,40 +5,47 @@
#include "shortcut_layer.h"
nvinfer1::ILayer* shortcutLayer(
nvinfer1::ITensor* shortcutLayer(
int layerIdx,
std::string mode,
std::string activation,
std::string inputVol,
std::string shortcutVol,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::ITensor* shortcutTensor,
nvinfer1::ITensor* shortcutInput,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ILayer* output;
nvinfer1::ITensor* outputTensor;
nvinfer1::ITensor* output;
if (inputVol != shortcutVol)
assert(block.at("type") == "shortcut");
nvinfer1::ElementWiseOperation operation = nvinfer1::ElementWiseOperation::kSUM;
if (mode == "mul")
operation = nvinfer1::ElementWiseOperation::kPROD;
if (mode == "add" && inputVol != shortcutVol)
{
nvinfer1::ISliceLayer* sl = network->addSlice(
*shortcutTensor,
nvinfer1::Dims3{0, 0, 0},
input->getDimensions(),
nvinfer1::Dims3{1, 1, 1});
assert(sl != nullptr);
outputTensor = sl->getOutput(0);
assert(outputTensor != nullptr);
} else
nvinfer1::ISliceLayer* slice = network->addSlice(
*shortcutInput, nvinfer1::Dims{3, {0, 0, 0}}, input->getDimensions(), nvinfer1::Dims{3, {1, 1, 1}});
assert(slice != nullptr);
std::string sliceLayerName = "slice_" + std::to_string(layerIdx);
slice->setName(sliceLayerName.c_str());
output = slice->getOutput(0);
}
else
{
outputTensor = shortcutTensor;
assert(outputTensor != nullptr);
output = shortcutInput;
}
nvinfer1::IElementWiseLayer* ew = network->addElementWise(
*input, *outputTensor,
nvinfer1::ElementWiseOperation::kSUM);
assert(ew != nullptr);
nvinfer1::IElementWiseLayer* shortcut = network->addElementWise(*input, *output, operation);
assert(shortcut != nullptr);
std::string shortcutLayerName = "shortcut_" + std::to_string(layerIdx);
shortcut->setName(shortcutLayerName.c_str());
output = shortcut->getOutput(0);
output = activationLayer(layerIdx, activation, ew, ew->getOutput(0), network);
output = activationLayer(layerIdx, activation, output, network);
assert(output != nullptr);
return output;

View File

@@ -6,17 +6,21 @@
#ifndef __SHORTCUT_LAYER_H__
#define __SHORTCUT_LAYER_H__
#include <map>
#include "NvInfer.h"
#include "activation_layer.h"
nvinfer1::ILayer* shortcutLayer(
nvinfer1::ITensor* shortcutLayer(
int layerIdx,
std::string mode,
std::string activation,
std::string inputVol,
std::string shortcutVol,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::ITensor* shortcutTensor,
nvinfer1::ITensor* shortcut,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -0,0 +1,123 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "shuffle_layer.h"
nvinfer1::ITensor* shuffleLayer(
int layerIdx,
std::string& layer,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
std::vector<nvinfer1::ITensor*> tensorOutputs,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "shuffle");
nvinfer1::IShuffleLayer* shuffle = network->addShuffle(*input);
assert(shuffle != nullptr);
std::string shuffleLayerName = "shuffle_" + std::to_string(layerIdx);
shuffle->setName(shuffleLayerName.c_str());
if (block.find("reshape") != block.end())
{
std::string strReshape = block.at("reshape");
std::vector<int32_t> reshape;
size_t lastPos = 0, pos = 0;
while ((pos = strReshape.find(',', lastPos)) != std::string::npos)
{
int vL = std::stoi(trim(strReshape.substr(lastPos, pos - lastPos)));
reshape.push_back(vL);
lastPos = pos + 1;
}
if (lastPos < strReshape.length())
{
std::string lastV = trim(strReshape.substr(lastPos));
if (!lastV.empty())
reshape.push_back(std::stoi(lastV));
}
assert(!reshape.empty());
int from = -1;
if (block.find("from") != block.end())
from = std::stoi(block.at("from"));
if (from < 0)
from = tensorOutputs.size() + from;
layer = std::to_string(from);
nvinfer1::Dims inputTensorDims = tensorOutputs[from]->getDimensions();
int32_t l = inputTensorDims.d[1] * inputTensorDims.d[2];
nvinfer1::Dims reshapeDims;
reshapeDims.nbDims = reshape.size();
for (uint i = 0; i < reshape.size(); ++i)
if (reshape[i] == 0)
reshapeDims.d[i] = l;
else
reshapeDims.d[i] = reshape[i];
shuffle->setReshapeDimensions(reshapeDims);
}
if (block.find("transpose1") != block.end())
{
std::string strTranspose1 = block.at("transpose1");
std::vector<int32_t> transpose1;
size_t lastPos = 0, pos = 0;
while ((pos = strTranspose1.find(',', lastPos)) != std::string::npos)
{
int vL = std::stoi(trim(strTranspose1.substr(lastPos, pos - lastPos)));
transpose1.push_back(vL);
lastPos = pos + 1;
}
if (lastPos < strTranspose1.length())
{
std::string lastV = trim(strTranspose1.substr(lastPos));
if (!lastV.empty())
transpose1.push_back(std::stoi(lastV));
}
assert(!transpose1.empty());
nvinfer1::Permutation permutation1;
for (uint i = 0; i < transpose1.size(); ++i)
permutation1.order[i] = transpose1[i];
shuffle->setFirstTranspose(permutation1);
}
if (block.find("transpose2") != block.end())
{
std::string strTranspose2 = block.at("transpose2");
std::vector<int32_t> transpose2;
size_t lastPos = 0, pos = 0;
while ((pos = strTranspose2.find(',', lastPos)) != std::string::npos)
{
int vL = std::stoi(trim(strTranspose2.substr(lastPos, pos - lastPos)));
transpose2.push_back(vL);
lastPos = pos + 1;
}
if (lastPos < strTranspose2.length())
{
std::string lastV = trim(strTranspose2.substr(lastPos));
if (!lastV.empty())
transpose2.push_back(std::stoi(lastV));
}
assert(!transpose2.empty());
nvinfer1::Permutation permutation2;
for (uint i = 0; i < transpose2.size(); ++i)
permutation2.order[i] = transpose2[i];
shuffle->setSecondTranspose(permutation2);
}
output = shuffle->getOutput(0);
return output;
}

View File

@@ -0,0 +1,20 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef __SHUFFLE_LAYER_H__
#define __SHUFFLE_LAYER_H__
#include "NvInfer.h"
#include "../utils.h"
nvinfer1::ITensor* shuffleLayer(
int layerIdx,
std::string& layer,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
std::vector<nvinfer1::ITensor*> tensorOutputs,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -0,0 +1,29 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "softmax_layer.h"
nvinfer1::ITensor* softmaxLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "softmax");
assert(block.find("axes") != block.end());
int axes = std::stoi(block.at("axes"));
nvinfer1::ISoftMaxLayer* softmax = network->addSoftMax(*input);
assert(softmax != nullptr);
std::string softmaxLayerName = "softmax_" + std::to_string(layerIdx);
softmax->setName(softmaxLayerName.c_str());
softmax->setAxes(1 << axes);
output = softmax->getOutput(0);
return output;
}

View File

@@ -0,0 +1,20 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef __SOFTMAX_LAYER_H__
#define __SOFTMAX_LAYER_H__
#include <map>
#include <cassert>
#include "NvInfer.h"
nvinfer1::ITensor* softmaxLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -5,20 +5,28 @@
#include "upsample_layer.h"
nvinfer1::ILayer* upsampleLayer(
nvinfer1::ITensor* upsampleLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "upsample");
assert(block.find("stride") != block.end());
int stride = std::stoi(block.at("stride"));
nvinfer1::IResizeLayer* resize_layer = network->addResize(*input);
resize_layer->setResizeMode(nvinfer1::ResizeMode::kNEAREST);
float scale[3] = {1, static_cast<float>(stride), static_cast<float>(stride)};
resize_layer->setScales(scale, 3);
std::string layer_name = "upsample_" + std::to_string(layerIdx);
resize_layer->setName(layer_name.c_str());
return resize_layer;
nvinfer1::IResizeLayer* resize = network->addResize(*input);
assert(resize != nullptr);
std::string resizeLayerName = "upsample_" + std::to_string(layerIdx);
resize->setName(resizeLayerName.c_str());
resize->setResizeMode(nvinfer1::ResizeMode::kNEAREST);
resize->setScales(scale, 3);
output = resize->getOutput(0);
return output;
}

View File

@@ -7,12 +7,11 @@
#define __UPSAMPLE_LAYER_H__
#include <map>
#include <vector>
#include <cassert>
#include "NvInfer.h"
nvinfer1::ILayer* upsampleLayer(
nvinfer1::ITensor* upsampleLayer(
int layerIdx,
std::map<std::string, std::string>& block,
nvinfer1::ITensor* input,

View File

@@ -37,13 +37,11 @@ cudaError_t sortDetections(
float* _d_scores = reinterpret_cast<float*>(d_scores) + (batch * outputSize);
int* _countData = reinterpret_cast<int*>(countData) + (batch);
int* _count = (int*)malloc(sizeof(int));
cudaMemcpy(_count, (int*)&_countData[0], sizeof(int), cudaMemcpyDeviceToHost);
int count = _count[0];
int count;
cudaMemcpy(&count, _countData, sizeof(int), cudaMemcpyDeviceToHost);
if (count == 0)
{
free(_count);
return cudaGetLastError();
}
@@ -72,13 +70,13 @@ cudaError_t sortDetections(
int _topK = count < topK ? count : topK;
int threads_per_block = 0;
int number_of_blocks = 4;
int threads_per_block = 16;
int number_of_blocks = 0;
if (_topK % 2 == 0 && _topK >= number_of_blocks)
threads_per_block = _topK / number_of_blocks;
if (_topK % 2 == 0 && _topK >= threads_per_block)
number_of_blocks = _topK / threads_per_block;
else
threads_per_block = (_topK / number_of_blocks) + 1;
number_of_blocks = (_topK / threads_per_block) + 1;
sortOutput<<<number_of_blocks, threads_per_block, 0, stream>>>(
_d_indexes, _d_scores, reinterpret_cast<float*>(d_boxes) + (batch * 4 * outputSize),
@@ -89,8 +87,6 @@ cudaError_t sortDetections(
cudaFree(d_keys_out);
cudaFree(d_values_out);
cudaFree(d_temp_storage);
free(_count);
}
return cudaGetLastError();
}

View File

@@ -132,11 +132,10 @@ std::string dimsToString(const nvinfer1::Dims d)
{
std::stringstream s;
assert(d.nbDims >= 1);
s << "[";
for (int i = 0; i < d.nbDims - 1; ++i)
{
s << std::setw(4) << d.d[i] << " x";
}
s << std::setw(4) << d.d[d.nbDims - 1];
s << d.d[i] << ", ";
s << d.d[d.nbDims - 1] << "]";
return s.str();
}
@@ -152,10 +151,9 @@ int getNumChannels(nvinfer1::ITensor* t)
void printLayerInfo(
std::string layerIndex, std::string layerName, std::string layerInput, std::string layerOutput, std::string weightPtr)
{
std::cout << std::setw(6) << std::left << layerIndex << std::setw(24) << std::left << layerName;
std::cout << std::setw(20) << std::left << layerInput << std::setw(20) << std::left
<< layerOutput;
std::cout << std::setw(7) << std::left << weightPtr << std::endl;
std::cout << std::setw(8) << std::left << layerIndex << std::setw(30) << std::left << layerName;
std::cout << std::setw(20) << std::left << layerInput << std::setw(20) << std::left << layerOutput;
std::cout << weightPtr << std::endl;
}
std::string getAbsPath(std::string path)

View File

@@ -158,7 +158,6 @@ NvDsInferStatus Yolo::parseModel(nvinfer1::INetworkDefinition& network) {
NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition& network)
{
int weightPtr = 0;
int channels = m_InputC;
std::string weightsType;
if (m_WtsFilePath.find(".weights") != std::string::npos)
@@ -172,81 +171,64 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
else if (m_NetworkType.find("yolor") != std::string::npos)
eps = 1.0e-4;
nvinfer1::ITensor* data =
network.addInput(m_InputBlobName.c_str(), nvinfer1::DataType::kFLOAT,
nvinfer1::Dims3{static_cast<int>(m_InputC),
static_cast<int>(m_InputH), static_cast<int>(m_InputW)});
nvinfer1::ITensor* data = network.addInput(
m_InputBlobName.c_str(), nvinfer1::DataType::kFLOAT,
nvinfer1::Dims{3, {static_cast<int>(m_InputC), static_cast<int>(m_InputH), static_cast<int>(m_InputW)}});
assert(data != nullptr && data->getDimensions().nbDims > 0);
nvinfer1::ITensor* previous = data;
std::vector<nvinfer1::ITensor*> tensorOutputs;
std::vector<nvinfer1::ITensor*> yoloInputs;
uint inputYoloCount = 0;
nvinfer1::ITensor* yoloTensorInputs[m_YoloCount];
uint yoloCountInputs = 0;
int modelType = -1;
for (uint i = 0; i < m_ConfigBlocks.size(); ++i)
{
assert(getNumChannels(previous) == channels);
std::string layerIndex = "(" + std::to_string(tensorOutputs.size()) + ")";
if (m_ConfigBlocks.at(i).at("type") == "net")
printLayerInfo("", "layer", " input", " output", "weightPtr");
printLayerInfo("", "Layer", "Input Shape", "Output Shape", "WeightPtr");
else if (m_ConfigBlocks.at(i).at("type") == "convolutional")
{
int channels = getNumChannels(previous);
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = convolutionalLayer(
previous = convolutionalLayer(
i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, channels, eps, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "conv_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
std::string layerName = "conv_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "batchnorm")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = batchnormLayer(
previous = batchnormLayer(
i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, eps, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "bn_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
std::string layerName = "batchnorm_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "implicit_add" || m_ConfigBlocks.at(i).at("type") == "implicit_mul")
{
std::string type;
if (m_ConfigBlocks.at(i).at("type") == "implicit_add")
type = "add";
else if (m_ConfigBlocks.at(i).at("type") == "implicit_mul")
type = "mul";
assert(m_ConfigBlocks.at(i).find("filters") != m_ConfigBlocks.at(i).end());
int filters = std::stoi(m_ConfigBlocks.at(i).at("filters"));
nvinfer1::ILayer* out = implicitLayer(filters, weights, m_TrtWeights, weightPtr, &network);
previous = out->getOutput(0);
previous = implicitLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, &network);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "implicit_" + type;
printLayerInfo(layerIndex, layerType, " -", outputVol, std::to_string(weightPtr));
std::string layerName = m_ConfigBlocks.at(i).at("type");
printLayerInfo(layerIndex, layerName, "-", outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "shift_channels" || m_ConfigBlocks.at(i).at("type") == "control_channels")
else if (m_ConfigBlocks.at(i).at("type") == "shift_channels" ||
m_ConfigBlocks.at(i).at("type") == "control_channels")
{
std::string type;
if (m_ConfigBlocks.at(i).at("type") == "shift_channels")
type = "shift";
else if (m_ConfigBlocks.at(i).at("type") == "control_channels")
type = "control";
assert(m_ConfigBlocks.at(i).find("from") != m_ConfigBlocks.at(i).end());
int from = stoi(m_ConfigBlocks.at(i).at("from"));
if (from > 0)
@@ -254,140 +236,193 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
assert((i - 2 >= 0) && (i - 2 < tensorOutputs.size()));
assert((i + from - 1 >= 0) && (i + from - 1 < tensorOutputs.size()));
assert(i + from - 1 < i - 2);
nvinfer1::ILayer* out = channelsLayer(type, previous, tensorOutputs[i + from - 1], &network);
previous = out->getOutput(0);
std::string inputVol = dimsToString(previous->getDimensions());
previous = channelsLayer(i, m_ConfigBlocks.at(i), previous, tensorOutputs[i + from - 1], &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = type + "_channels" + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerType, " -", outputVol, " -");
}
else if (m_ConfigBlocks.at(i).at("type") == "dropout")
{
// Skip dropout layer
assert(previous != nullptr);
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "dropout", " -", " -", " -");
std::string layerName = m_ConfigBlocks.at(i).at("type") + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "shortcut")
{
assert(m_ConfigBlocks.at(i).find("activation") != m_ConfigBlocks.at(i).end());
assert(m_ConfigBlocks.at(i).find("from") != m_ConfigBlocks.at(i).end());
std::string activation = m_ConfigBlocks.at(i).at("activation");
int from = stoi(m_ConfigBlocks.at(i).at("from"));
if (from > 0)
from = from - i + 1;
assert((i - 2 >= 0) && (i - 2 < tensorOutputs.size()));
assert((i + from - 1 >= 0) && (i + from - 1 < tensorOutputs.size()));
assert(i + from - 1 < i - 2);
std::string mode = "add";
if (m_ConfigBlocks.at(i).find("mode") != m_ConfigBlocks.at(i).end())
mode = m_ConfigBlocks.at(i).at("mode");
std::string activation = "linear";
if (m_ConfigBlocks.at(i).find("activation") != m_ConfigBlocks.at(i).end())
activation = m_ConfigBlocks.at(i).at("activation");
std::string inputVol = dimsToString(previous->getDimensions());
std::string shortcutVol = dimsToString(tensorOutputs[i + from - 1]->getDimensions());
nvinfer1::ILayer* out = shortcutLayer(i, activation, inputVol, shortcutVol, previous, tensorOutputs[i + from - 1], &network);
previous = out->getOutput(0);
previous = shortcutLayer(
i, mode, activation, inputVol, shortcutVol, m_ConfigBlocks.at(i), previous, tensorOutputs[i + from - 1],
&network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "shortcut_" + m_ConfigBlocks.at(i).at("activation") + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerType, " -", outputVol, " -");
if (inputVol != shortcutVol) {
std::string layerName = "shortcut_" + mode + "_" + activation + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
if (mode == "add" && inputVol != shortcutVol)
std::cout << inputVol << " +" << shortcutVol << std::endl;
}
}
else if (m_ConfigBlocks.at(i).at("type") == "route")
{
assert(m_ConfigBlocks.at(i).find("layers") != m_ConfigBlocks.at(i).end());
nvinfer1::ILayer* out = routeLayer(i, m_ConfigBlocks.at(i), tensorOutputs, &network);
previous = out->getOutput(0);
std::string layers;
previous = routeLayer(i, layers, m_ConfigBlocks.at(i), tensorOutputs, &network);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "route", " -", outputVol, std::to_string(weightPtr));
std::string layerName = "route: " + layers;
printLayerInfo(layerIndex, layerName, "-", outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "upsample")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = upsampleLayer(i - 1, m_ConfigBlocks[i], previous, &network);
previous = out->getOutput(0);
previous = upsampleLayer(i, m_ConfigBlocks[i], previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "upsample", inputVol, outputVol, " -");
std::string layerName = "upsample";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "maxpool")
else if (m_ConfigBlocks.at(i).at("type") == "maxpool" || m_ConfigBlocks.at(i).at("type") == "avgpool")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = maxpoolLayer(i, m_ConfigBlocks.at(i), previous, &network);
previous = out->getOutput(0);
previous = poolingLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "maxpool", inputVol, outputVol, std::to_string(weightPtr));
std::string layerName = m_ConfigBlocks.at(i).at("type");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reorg")
{
if (m_NetworkType.find("yolov5") != std::string::npos || m_NetworkType.find("yolor") != std::string::npos)
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = reorgV5Layer(i, previous, &network);
previous = out->getOutput(0);
previous = reorgLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "reorgV5";
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
std::string layerName = "reorg";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else
else if (m_ConfigBlocks.at(i).at("type") == "reduce")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::IPluginV2* reorgPlugin = createReorgPlugin(2);
assert(reorgPlugin != nullptr);
nvinfer1::IPluginV2Layer* reorg =
network.addPluginV2(&previous, 1, *reorgPlugin);
assert(reorg != nullptr);
std::string layerName = "reorg_" + std::to_string(i);
reorg->setName(layerName.c_str());
previous = reorg->getOutput(0);
previous = reduceLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
channels = getNumChannels(previous);
tensorOutputs.push_back(reorg->getOutput(0));
printLayerInfo(layerIndex, "reorg", inputVol, outputVol, std::to_string(weightPtr));
tensorOutputs.push_back(previous);
std::string layerName = "reduce";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "shuffle")
{
std::string layer;
std::string inputVol = dimsToString(previous->getDimensions());
previous = shuffleLayer(i, layer, m_ConfigBlocks.at(i), previous, tensorOutputs, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "shuffle: " + layer;
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "softmax")
{
std::string inputVol = dimsToString(previous->getDimensions());
previous = softmaxLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "softmax";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "yolo" || m_ConfigBlocks.at(i).at("type") == "region")
{
if (m_ConfigBlocks.at(i).at("type") == "yolo")
{
if (m_NetworkType.find("yolor") != std::string::npos)
modelType = 2;
else
modelType = 1;
}
else
modelType = 0;
std::string layerName = modelType != 0 ? "yolo_" + std::to_string(i) : "region_" + std::to_string(i);
std::string blobName = modelType != 0 ? "yolo_" + std::to_string(i) : "region_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(inputYoloCount);
curYoloTensor.blobName = layerName;
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.gridSizeX = prevTensorDims.d[2];
curYoloTensor.gridSizeY = prevTensorDims.d[1];
std::string inputVol = dimsToString(previous->getDimensions());
channels = getNumChannels(previous);
tensorOutputs.push_back(previous);
yoloInputs.push_back(previous);
++inputYoloCount;
printLayerInfo(layerIndex, modelType != 0 ? "yolo" : "region", inputVol, " -", " -");
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = modelType != 0 ? "yolo" : "region";
printLayerInfo(layerIndex, layerName, inputVol, "-", "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "cls")
{
modelType = 3;
std::string blobName = "cls_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[1];
m_NumClasses = prevTensorDims.d[0];
std::string inputVol = dimsToString(previous->getDimensions());
previous = clsLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "cls";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reg")
{
modelType = 3;
std::string blobName = "reg_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[1];
std::string inputVol = dimsToString(previous->getDimensions());
previous = regLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "reg";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else
@@ -403,16 +438,17 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
assert(0);
}
if (m_YoloCount == inputYoloCount)
if (m_YoloCount == yoloCountInputs)
{
assert((modelType != -1) && "\nCould not determine model type");
nvinfer1::ITensor* yoloInputTensors[inputYoloCount];
uint64_t outputSize = 0;
for (uint j = 0; j < inputYoloCount; ++j)
for (uint j = 0; j < yoloCountInputs; ++j)
{
yoloInputTensors[j] = yoloInputs[j];
TensorInfo& curYoloTensor = m_YoloTensors.at(j);
if (modelType == 3)
outputSize = curYoloTensor.numBBoxes;
else
outputSize += curYoloTensor.gridSizeX * curYoloTensor.gridSizeY * curYoloTensor.numBBoxes;
}
@@ -422,21 +458,15 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
assert(0);
}
std::string layerName = "yolo";
nvinfer1::IPluginV2* yoloPlugin = new YoloLayer(
m_InputW, m_InputH, m_NumClasses, m_NewCoords, m_YoloTensors, outputSize, modelType, m_TopK,
m_ScoreThreshold);
m_InputW, m_InputH, m_NumClasses, m_NewCoords, m_YoloTensors, outputSize, modelType, m_TopK, m_ScoreThreshold);
assert(yoloPlugin != nullptr);
nvinfer1::IPluginV2Layer* yolo = network.addPluginV2(yoloInputTensors, inputYoloCount, *yoloPlugin);
nvinfer1::IPluginV2Layer* yolo = network.addPluginV2(yoloTensorInputs, m_YoloCount, *yoloPlugin);
assert(yolo != nullptr);
yolo->setName(layerName.c_str());
previous = yolo->getOutput(0);
assert(previous != nullptr);
previous->setName(layerName.c_str());
tensorOutputs.push_back(yolo->getOutput(0));
std::string yoloLayerName = "yolo";
yolo->setName(yoloLayerName.c_str());
nvinfer1::ITensor* yoloTensors[] = {yolo->getOutput(0), yolo->getOutput(1)};
std::string outputVol = dimsToString(previous->getDimensions());
nvinfer1::ITensor* yoloTensorOutputs[] = {yolo->getOutput(0), yolo->getOutput(1)};
nvinfer1::plugin::NMSParameters nmsParams;
nmsParams.shareLocation = true;
@@ -448,28 +478,28 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
nmsParams.iouThreshold = m_IouThreshold;
nmsParams.isNormalized = false;
layerName = "batchedNMS";
std::string nmslayerName = "batchedNMS";
nvinfer1::IPluginV2* batchedNMS = createBatchedNMSPlugin(nmsParams);
nvinfer1::IPluginV2Layer* nms = network.addPluginV2(yoloTensors, 2, *batchedNMS);
nms->setName(layerName.c_str());
nvinfer1::IPluginV2Layer* nms = network.addPluginV2(yoloTensorOutputs, 2, *batchedNMS);
nms->setName(nmslayerName.c_str());
nvinfer1::ITensor* num_detections = nms->getOutput(0);
layerName = "num_detections";
num_detections->setName(layerName.c_str());
nmslayerName = "num_detections";
num_detections->setName(nmslayerName.c_str());
nvinfer1::ITensor* nmsed_boxes = nms->getOutput(1);
layerName = "nmsed_boxes";
nmsed_boxes->setName(layerName.c_str());
nmslayerName = "nmsed_boxes";
nmsed_boxes->setName(nmslayerName.c_str());
nvinfer1::ITensor* nmsed_scores = nms->getOutput(2);
layerName = "nmsed_scores";
nmsed_scores->setName(layerName.c_str());
nmslayerName = "nmsed_scores";
nmsed_scores->setName(nmslayerName.c_str());
nvinfer1::ITensor* nmsed_classes = nms->getOutput(3);
layerName = "nmsed_classes";
nmsed_classes->setName(layerName.c_str());
nmslayerName = "nmsed_classes";
nmsed_classes->setName(nmslayerName.c_str());
network.markOutput(*num_detections);
network.markOutput(*nmsed_boxes);
network.markOutput(*nmsed_scores);
network.markOutput(*nmsed_classes);
printLayerInfo("", "batched_nms", " -", outputVol, " -");
printLayerInfo("", "batched_nms", "-", "-", "-");
}
else {
std::cout << "\nError in yolo cfg file" << std::endl;
@@ -620,6 +650,12 @@ void Yolo::parseConfigBlocks()
m_YoloTensors.push_back(outputTensor);
}
else if ((block.at("type") == "cls") || (block.at("type") == "reg"))
{
++m_YoloCount;
TensorInfo outputTensor;
m_YoloTensors.push_back(outputTensor);
}
}
}
@@ -640,9 +676,7 @@ void Yolo::parseConfigNMSBlocks()
void Yolo::destroyNetworkUtils()
{
for (uint i = 0; i < m_TrtWeights.size(); ++i)
{
if (m_TrtWeights[i].count > 0)
free(const_cast<void*>(m_TrtWeights[i].values));
}
m_TrtWeights.clear();
}

View File

@@ -33,8 +33,13 @@
#include "layers/shortcut_layer.h"
#include "layers/route_layer.h"
#include "layers/upsample_layer.h"
#include "layers/maxpool_layer.h"
#include "layers/reorgv5_layer.h"
#include "layers/pooling_layer.h"
#include "layers/reorg_layer.h"
#include "layers/reduce_layer.h"
#include "layers/shuffle_layer.h"
#include "layers/softmax_layer.h"
#include "layers/cls_layer.h"
#include "layers/reg_layer.h"
#include "nvdsinfer_custom_impl.h"

View File

@@ -28,7 +28,7 @@ __global__ void gpuYoloLayer(
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);
int count = (int)atomicAdd(countData, 1);
const float alpha = scaleXY;
const float beta = -0.5 * (scaleXY - 1);

View File

@@ -0,0 +1,73 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include <stdint.h>
#include <stdio.h>
__global__ void gpuYoloLayer_e(
const float* cls, const float* reg, int* d_indexes, float* d_scores, float* d_boxes, int* d_classes, int* countData,
const float scoreThreshold, const uint netWidth, const uint netHeight, const uint numOutputClasses,
const uint64_t outputSize)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
if (x_id >= outputSize)
return;
float maxProb = 0.0f;
int maxIndex = -1;
for (uint i = 0; i < numOutputClasses; ++i)
{
float prob
= cls[x_id * numOutputClasses + i];
if (prob > maxProb)
{
maxProb = prob;
maxIndex = i;
}
}
if (maxProb < scoreThreshold)
return;
int count = (int)atomicAdd(countData, 1);
d_indexes[count] = count;
d_scores[count] = maxProb + 1.f;
d_boxes[count * 4 + 0] = reg[x_id * 4 + 0];
d_boxes[count * 4 + 1] = reg[x_id * 4 + 1];
d_boxes[count * 4 + 2] = reg[x_id * 4 + 2];
d_boxes[count * 4 + 3] = reg[x_id * 4 + 3];
d_classes[count] = maxIndex;
}
cudaError_t cudaYoloLayer_e(
const void* cls, const void* reg, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight,
const uint& numOutputClasses, cudaStream_t stream);
cudaError_t cudaYoloLayer_e(
const void* cls, const void* reg, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight,
const uint& numOutputClasses, cudaStream_t stream)
{
int threads_per_block = 16;
int number_of_blocks = 525;
for (unsigned int batch = 0; batch < batchSize; ++batch)
{
gpuYoloLayer_e<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*>(cls) + (batch * numOutputClasses * outputSize),
reinterpret_cast<const float*>(reg) + (batch * 4 * outputSize),
reinterpret_cast<int*>(d_indexes) + (batch * outputSize),
reinterpret_cast<float*>(d_scores) + (batch * outputSize),
reinterpret_cast<float*>(d_boxes) + (batch * 4 * outputSize),
reinterpret_cast<int*>(d_classes) + (batch * outputSize), reinterpret_cast<int*>(countData) + (batch),
scoreThreshold, netWidth, netHeight, numOutputClasses, outputSize);
}
return cudaGetLastError();
}

View File

@@ -26,7 +26,7 @@ __global__ void gpuYoloLayer_nc(
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);
int count = (int)atomicAdd(countData, 1);
const float alpha = scaleXY;
const float beta = -0.5 * (scaleXY - 1);

View File

@@ -28,7 +28,7 @@ __global__ void gpuYoloLayer_r(
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);
int count = (int)atomicAdd(countData, 1);
const float alpha = scaleXY;
const float beta = -0.5 * (scaleXY - 1);

View File

@@ -49,7 +49,7 @@ __global__ void gpuRegionLayer(
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);
int count = (int)atomicAdd(countData, 1);
float x
= (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)])

View File

@@ -47,6 +47,11 @@ namespace {
}
}
cudaError_t cudaYoloLayer_e(
const void* cls, const void* reg, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight,
const uint& numOutputClasses, cudaStream_t stream);
cudaError_t cudaYoloLayer_r(
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
@@ -88,6 +93,7 @@ YoloLayer::YoloLayer (const void* data, size_t length)
read(d, m_TopK);
read(d, m_ScoreThreshold);
if (m_Type != 3) {
uint yoloTensorsSize;
read(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i)
@@ -117,6 +123,7 @@ YoloLayer::YoloLayer (const void* data, size_t length)
}
m_YoloTensors.push_back(curYoloTensor);
}
}
kNUM_CLASSES = m_NumClasses;
};
@@ -147,9 +154,9 @@ YoloLayer::getOutputDimensions(
{
assert(index < 3);
if (index == 0) {
return nvinfer1::Dims3(m_TopK, 1, 4);
return nvinfer1::Dims{3, {static_cast<int>(m_TopK), 1, 4}};
}
return nvinfer1::DimsHW(m_TopK, m_NumClasses);
return nvinfer1::Dims{2, {static_cast<int>(m_TopK), static_cast<int>(m_NumClasses)}};
}
bool YoloLayer::supportsFormat (
@@ -173,30 +180,40 @@ int32_t YoloLayer::enqueue (
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
void* countData = workspace;
void* bboxData = outputs[0];
void* scoreData = outputs[1];
CUDA_CHECK(cudaMemsetAsync((int*)countData, 0, sizeof(int) * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)bboxData, 0, sizeof(float) * m_TopK * 4 * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)scoreData, 0, sizeof(float) * m_TopK * m_NumClasses * batchSize, stream));
void* countData;
CUDA_CHECK(cudaMalloc(&countData, sizeof(int) * batchSize));
CUDA_CHECK(cudaMemsetAsync((int*)countData, 0, sizeof(int) * batchSize, stream));
void* d_indexes;
CUDA_CHECK(cudaMallocHost(&d_indexes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_indexes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
CUDA_CHECK(cudaMalloc(&d_indexes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((int*)d_indexes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
void* d_scores;
CUDA_CHECK(cudaMallocHost(&d_scores, sizeof(float) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMalloc(&d_scores, sizeof(float) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
void* d_boxes;
CUDA_CHECK(cudaMallocHost(&d_boxes, sizeof(float) * m_OutputSize * 4 * batchSize));
CUDA_CHECK(cudaMalloc(&d_boxes, sizeof(float) * m_OutputSize * 4 * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
void* d_classes;
CUDA_CHECK(cudaMallocHost(&d_classes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMalloc(&d_classes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
if (m_Type == 3)
{
CUDA_CHECK(cudaYoloLayer_e(
inputs[0], inputs[1], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
}
else
{
uint yoloTensorsSize = m_YoloTensors.size();
for (uint i = 0; i < yoloTensorsSize; ++i)
{
@@ -213,12 +230,12 @@ int32_t YoloLayer::enqueue (
void* v_mask;
if (anchors.size() > 0) {
float* f_anchors = anchors.data();
CUDA_CHECK(cudaMallocHost(&v_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMalloc(&v_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMemcpy(v_anchors, f_anchors, sizeof(float) * anchors.size(), cudaMemcpyHostToDevice));
}
if (mask.size() > 0) {
int* f_mask = mask.data();
CUDA_CHECK(cudaMallocHost(&v_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMalloc(&v_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMemcpy(v_mask, f_mask, sizeof(int) * mask.size(), cudaMemcpyHostToDevice));
}
@@ -246,7 +263,7 @@ int32_t YoloLayer::enqueue (
}
else {
void* softmax;
CUDA_CHECK(cudaMallocHost(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaRegionLayer(
@@ -254,14 +271,15 @@ int32_t YoloLayer::enqueue (
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors,
stream));
CUDA_CHECK(cudaFreeHost(softmax));
CUDA_CHECK(cudaFree(softmax));
}
if (anchors.size() > 0) {
CUDA_CHECK(cudaFreeHost(v_anchors));
CUDA_CHECK(cudaFree(v_anchors));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaFreeHost(v_mask));
CUDA_CHECK(cudaFree(v_mask));
}
}
}
@@ -269,10 +287,11 @@ int32_t YoloLayer::enqueue (
d_indexes, d_scores, d_boxes, d_classes, bboxData, scoreData, countData, batchSize, m_OutputSize, m_TopK,
m_NumClasses, stream));
CUDA_CHECK(cudaFreeHost(d_indexes));
CUDA_CHECK(cudaFreeHost(d_scores));
CUDA_CHECK(cudaFreeHost(d_boxes));
CUDA_CHECK(cudaFreeHost(d_classes));
CUDA_CHECK(cudaFree(countData));
CUDA_CHECK(cudaFree(d_indexes));
CUDA_CHECK(cudaFree(d_scores));
CUDA_CHECK(cudaFree(d_boxes));
CUDA_CHECK(cudaFree(d_classes));
return 0;
}
@@ -290,6 +309,7 @@ size_t YoloLayer::getSerializationSize() const noexcept
totalSize += sizeof(m_TopK);
totalSize += sizeof(m_ScoreThreshold);
if (m_Type != 3) {
uint yoloTensorsSize = m_YoloTensors.size();
totalSize += sizeof(yoloTensorsSize);
@@ -303,6 +323,7 @@ size_t YoloLayer::getSerializationSize() const noexcept
totalSize += sizeof(uint) + sizeof(curYoloTensor.anchors[0]) * curYoloTensor.anchors.size();
totalSize += sizeof(uint) + sizeof(curYoloTensor.mask[0]) * curYoloTensor.mask.size();
}
}
return totalSize;
}
@@ -320,6 +341,7 @@ void YoloLayer::serialize(void* buffer) const noexcept
write(d, m_TopK);
write(d, m_ScoreThreshold);
if (m_Type != 3) {
uint yoloTensorsSize = m_YoloTensors.size();
write(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i)
@@ -345,6 +367,7 @@ void YoloLayer::serialize(void* buffer) const noexcept
}
}
}
}
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
{

View File

@@ -85,9 +85,7 @@ public:
void terminate () noexcept override {}
size_t getWorkspaceSize (int maxBatchSize) const noexcept override {
return maxBatchSize * sizeof(int);
}
size_t getWorkspaceSize (int maxBatchSize) const noexcept override { return 0; }
int32_t enqueue (
int batchSize, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)

View File

@@ -7,7 +7,6 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
* Models benchmarks
* DeepStream tutorials
* YOLOX support
* PP-YOLO support
* YOLOv6 support
* YOLOv7 support
* Dynamic batch-size
@@ -23,18 +22,18 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
* Support for INT8 calibration
* Support for non square models
* New documentation for multiple models
* **YOLOv5 >= 2.0 support**
* **YOLOR support**
* YOLOv5 support
* YOLOR support
* **GPU YOLO Decoder** [#138](https://github.com/marcoslucianops/DeepStream-Yolo/issues/138)
* **GPU Batched NMS** [#142](https://github.com/marcoslucianops/DeepStream-Yolo/issues/142)
* **New YOLOv5 conversion**
* **PP-YOLOE support**
##
### Getting started
* [Requirements](#requirements)
* [Tested models](#tested-models)
* [Suported models](#supported-models)
* [Benchmarks](#benchmarks)
* [dGPU installation](#dgpu-installation)
* [Basic usage](#basic-usage)
@@ -42,6 +41,7 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
* [INT8 calibration](#int8-calibration)
* [YOLOv5 usage](docs/YOLOv5.md)
* [YOLOR usage](docs/YOLOR.md)
* [PP-YOLOE usage](docs/PPYOLOE.md)
* [Using your custom model](docs/customModels.md)
* [Multiple YOLO GIEs](docs/multipleGIEs.md)
@@ -81,23 +81,14 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
* [NVIDIA DeepStream SDK 6.0.1 / 6.0](https://developer.nvidia.com/embedded/deepstream-on-jetson-downloads-archived)
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
### For YOLOv5 and YOLOR
#### x86 platform
* [PyTorch >= 1.7.0](https://pytorch.org/get-started/locally/)
#### Jetson platform
* [PyTorch >= 1.7.0](https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-11-now-available/72048)
##
### Tested models
### Suported models
* [Darknet YOLO](https://github.com/AlexeyAB/darknet)
* [YOLOv5 >= 2.0](https://github.com/ultralytics/yolov5)
* [YOLOR](https://github.com/WongKinYiu/yolor)
* [PP-YOLOE](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/ppyoloe)
* [MobileNet-YOLO](https://github.com/dog-qiuqiu/MobileNet-Yolo)
* [YOLO-Fastest](https://github.com/dog-qiuqiu/Yolo-Fastest)

437
utils/gen_wts_ppyoloe.py Normal file
View File

@@ -0,0 +1,437 @@
import os
import struct
import paddle
import numpy as np
from ppdet.core.workspace import load_config, merge_config
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.engine import Trainer
from ppdet.slim import build_slim_model
class Layers(object):
def __init__(self, size, fw, fc, letter_box):
self.blocks = [0 for _ in range(300)]
self.current = -1
self.backbone_outs = []
self.neck_fpn_feats = []
self.neck_pan_feats = []
self.yolo_head_cls = []
self.yolo_head_reg = []
self.width = size[0] if len(size) == 1 else size[1]
self.height = size[0]
self.letter_box = letter_box
self.fw = fw
self.fc = fc
self.wc = 0
self.net()
def ConvBNLayer(self, child):
self.current += 1
self.convolutional(child, act='swish')
def CSPResStage(self, child, ret):
self.current += 1
if child.conv_down is not None:
self.convolutional(child.conv_down, act='swish')
self.convolutional(child.conv1, act='swish')
self.route('-2')
self.convolutional(child.conv2, act='swish')
idx = -3
for m in child.blocks:
self.convolutional(m.conv1, act='swish')
self.convolutional(m.conv2, act='swish')
self.shortcut(-3)
idx -= 3
self.route('%d, -1' % idx)
if child.attn is not None:
self.reduce((1, 2), mode='mean', keepdim=True)
self.convolutional(child.attn.fc, act='hardsigmoid')
self.shortcut(-3, ew='mul')
self.convolutional(child.conv3, act='swish')
if ret is True:
self.backbone_outs.append(self.current)
def CSPStage(self, child, stage):
self.current += 1
self.convolutional(child.conv1, act='swish')
self.route('-2')
self.convolutional(child.conv2, act='swish')
idx = -3
for m in child.convs:
if m.__class__.__name__ == 'BasicBlock':
self.convolutional(m.conv1, act='swish')
self.convolutional(m.conv2, act='swish')
idx -= 2
elif m.__class__.__name__ == 'SPP':
self.maxpool(m.pool0)
self.route('-2')
self.maxpool(m.pool1)
self.route('-4')
self.maxpool(m.pool2)
self.route('-6, -5, -3, -1')
self.convolutional(m.conv, act='swish')
idx -= 7
self.route('%d, -1' % idx)
self.convolutional(child.conv3, act='swish')
if stage == 'fpn':
self.neck_fpn_feats.append(self.current)
elif stage == 'pan':
self.neck_pan_feats.append(self.current)
def Concat(self, route):
self.current += 1
r = self.get_route(route)
self.route('-1, %d' % r)
def Upsample(self):
self.current += 1
self.upsample()
def AvgPool2d(self, route=None):
self.current += 1
if route is not None:
r = self.get_route(route)
self.route('%d' % r)
self.avgpool()
def ESEAttn(self, child, route=0):
self.current += 1
if route < 0:
self.route('%d' % route)
self.convolutional(child.fc, act='sigmoid')
self.shortcut(route - 3, ew='mul')
self.convolutional(child.conv, act='swish')
if route == 0:
self.shortcut(-5)
def Conv2D(self, child, act='linear'):
self.current += 1
self.convolutional(child, act=act)
def Shuffle(self, reshape=None, transpose1=None, transpose2=None, route=None, output=''):
self.current += 1
r = 0
if route is not None:
r = self.get_route(route)
self.shuffle(reshape=reshape, transpose1=transpose1, transpose2=transpose2, route=r)
if output == 'cls':
self.yolo_head_cls.append(self.current)
elif output == 'reg':
self.yolo_head_reg.append(self.current)
def SoftMax(self, axes):
self.current += 1
self.softmax(axes)
def Detect(self, output):
self.current += 1
routes = self.yolo_head_cls if output == 'cls' else self.yolo_head_reg
for i, route in enumerate(routes):
routes[i] = self.get_route(route)
self.route(str(routes)[1:-1], axis=-1)
self.yolo(output)
def net(self):
lb = 'letter_box=1\n' if self.letter_box else ''
self.fc.write('[net]\n' +
'width=%d\n' % self.width +
'height=%d\n' % self.height +
'channels=3\n' +
lb)
def convolutional(self, cv, act='linear', detect=False):
self.blocks[self.current] += 1
self.get_state_dict(cv.state_dict())
if cv.__class__.__name__ == 'Conv2D':
filters = cv._out_channels
size = cv._kernel_size
stride = cv._stride
pad = cv._padding
groups = cv._groups
bias = cv.bias
bn = False
else:
filters = cv.conv._out_channels
size = cv.conv._kernel_size
stride = cv.conv._stride
pad = cv.conv._padding
groups = cv.conv._groups
bias = cv.conv.bias
bn = True if hasattr(cv, 'bn') else False
if detect:
act = 'logistic'
b = 'batch_normalize=1\n' if bn is True else ''
g = 'groups=%d\n' % groups if groups > 1 else ''
w = 'bias=0\n' if bias is None and bn is False else ''
self.fc.write('\n[convolutional]\n' +
b +
'filters=%d\n' % filters +
'size=%s\n' % self.get_value(size) +
'stride=%s\n' % self.get_value(stride) +
'pad=%s\n' % self.get_value(pad) +
g +
w +
'activation=%s\n' % act)
def route(self, layers, axis=0):
self.blocks[self.current] += 1
a = 'axis=%d\n' % axis if axis != 0 else ''
self.fc.write('\n[route]\n' +
'layers=%s\n' % layers +
a)
def shortcut(self, r, ew='add', act='linear'):
self.blocks[self.current] += 1
m = 'mode=mul\n' if ew == 'mul' else ''
self.fc.write('\n[shortcut]\n' +
'from=%d\n' % r +
m +
'activation=%s\n' % act)
def reduce(self, dim, mode='mean', keepdim=False):
self.blocks[self.current] += 1
self.fc.write('\n[reduce]\n' +
'mode=%s\n' % mode +
'axes=%s\n' % str(dim)[1:-1] +
'keep=%d\n' % keepdim)
def maxpool(self, m):
self.blocks[self.current] += 1
stride = m.stride
size = m.ksize
mode = m.ceil_mode
m = 'maxpool_up' if mode else 'maxpool'
self.fc.write('\n[%s]\n' % m +
'stride=%d\n' % stride +
'size=%d\n' % size)
def upsample(self):
self.blocks[self.current] += 1
stride = 2
self.fc.write('\n[upsample]\n' +
'stride=%d\n' % stride)
def avgpool(self):
self.blocks[self.current] += 1
self.fc.write('\n[avgpool]\n')
def shuffle(self, reshape=None, transpose1=None, transpose2=None, route=None):
self.blocks[self.current] += 1
r = 'reshape=%s\n' % str(reshape)[1:-1] if reshape is not None else ''
t1 = 'transpose1=%s\n' % str(transpose1)[1:-1] if transpose1 is not None else ''
t2 = 'transpose2=%s\n' % str(transpose2)[1:-1] if transpose2 is not None else ''
f = 'from=%d\n' % route if route is not None else ''
self.fc.write('\n[shuffle]\n' +
r +
t1 +
t2 +
f)
def softmax(self, axes):
self.blocks[self.current] += 1
self.fc.write('\n[softmax]\n' +
'axes=%d\n' % axes)
def yolo(self, output):
self.blocks[self.current] += 1
self.fc.write('\n[%s]\n' % output)
def get_state_dict(self, state_dict):
for k, v in state_dict.items():
vr = v.reshape([-1]).numpy()
self.fw.write('{} {} '.format(k, len(vr)))
for vv in vr:
self.fw.write(' ')
self.fw.write(struct.pack('>f', float(vv)).hex())
self.fw.write('\n')
self.wc += 1
def get_anchors(self, anchor_points, stride_tensor):
vr = anchor_points.numpy()
self.fw.write('{} {} '.format('anchor_points', len(vr)))
for vv in vr:
self.fw.write(' ')
self.fw.write(struct.pack('>f', float(vv)).hex())
self.fw.write('\n')
self.wc += 1
vr = stride_tensor.numpy()
self.fw.write('{} {} '.format('stride_tensor', len(vr)))
for vv in vr:
self.fw.write(' ')
self.fw.write(struct.pack('>f', float(vv)).hex())
self.fw.write('\n')
self.wc += 1
def get_value(self, key):
if type(key) == int:
return key
return key[0] if key[0] == key[1] else str(key)[1:-1]
def get_route(self, n):
r = 0
for i, b in enumerate(self.blocks):
if i <= n:
r += b
else:
break
return r - 1
def export_model():
paddle.set_device('cpu')
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
FLAGS.opt['weights'] = FLAGS.weights
FLAGS.opt['exclude_nms'] = True
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn':
FLAGS.opt['norm_type'] = 'bn'
merge_config(FLAGS.opt)
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
merge_config(FLAGS.opt)
check_config(cfg)
check_gpu(cfg.use_gpu)
check_version()
trainer = Trainer(cfg, mode='test')
trainer.load_weights(cfg.weights)
trainer.model.eval()
if not os.path.exists('.tmp'):
os.makedirs('.tmp')
static_model, _ = trainer._get_infer_cfg_and_input_spec('.tmp')
os.system('rm -r .tmp')
return cfg, static_model
def parse_args():
parser = ArgsParser()
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pdparams) file path (required)')
parser.add_argument('--slim_config', default=None, type=str, help='Slim configuration file of slim method')
args = parser.parse_args()
return args
cfg, model = export_model()
model_name = cfg.filename
inference_size = (cfg.eval_height, cfg.eval_width)
letter_box = False
for sample_transforms in cfg['EvalReader']['sample_transforms']:
if 'Resize' in sample_transforms:
letter_box = sample_transforms['Resize']['keep_ratio']
backbone = cfg[cfg.architecture]['backbone']
neck = cfg[cfg.architecture]['neck']
yolo_head = cfg[cfg.architecture]['yolo_head']
wts_file = model_name + '.wts' if 'ppyoloe' in model_name else 'ppyoloe_' + model_name + '.wts'
cfg_file = model_name + '.cfg' if 'ppyoloe' in model_name else 'ppyoloe_' + model_name + '.cfg'
with open(wts_file, 'w') as fw, open(cfg_file, 'w') as fc:
layers = Layers(inference_size, fw, fc, letter_box)
if backbone == 'CSPResNet':
layers.fc.write('\n# CSPResNet\n')
for child in model.backbone.stem:
layers.ConvBNLayer(child)
for i, child in enumerate(model.backbone.stages):
ret = True if i in model.backbone.return_idx else False
layers.CSPResStage(child, ret)
else:
raise SystemExit('Model not supported')
if neck == 'CustomCSPPAN':
layers.fc.write('\n# CustomCSPPAN\n')
blocks = layers.backbone_outs[::-1]
for i, block in enumerate(blocks):
if i > 0:
layers.Concat(block)
layers.CSPStage(model.neck.fpn_stages[i][0], 'fpn')
if i < model.neck.num_blocks - 1:
layers.ConvBNLayer(model.neck.fpn_routes[i])
layers.Upsample()
layers.neck_pan_feats = [layers.neck_fpn_feats[-1], ]
for i in reversed(range(model.neck.num_blocks - 1)):
layers.ConvBNLayer(model.neck.pan_routes[i])
layers.Concat(layers.neck_fpn_feats[i])
layers.CSPStage(model.neck.pan_stages[i][0], 'pan')
layers.neck_pan_feats = layers.neck_pan_feats[::-1]
else:
raise SystemExit('Model not supported')
if yolo_head == 'PPYOLOEHead':
layers.fc.write('\n# PPYOLOEHead\n')
for i, feat in enumerate(layers.neck_pan_feats):
if i > 0:
layers.AvgPool2d(route=feat)
else:
layers.AvgPool2d()
layers.ESEAttn(model.yolo_head.stem_cls[i])
layers.Conv2D(model.yolo_head.pred_cls[i], act='sigmoid')
layers.Shuffle(reshape=[model.yolo_head.num_classes, 0], route=feat, output='cls')
layers.ESEAttn(model.yolo_head.stem_reg[i], route=-7)
layers.Conv2D(model.yolo_head.pred_reg[i])
layers.Shuffle(reshape=[4, model.yolo_head.reg_max + 1, 0], transpose2=[1, 0, 2], route=feat)
layers.SoftMax(0)
layers.Conv2D(model.yolo_head.proj_conv)
layers.Shuffle(reshape=[4, 0], route=feat, output='reg')
layers.Detect('cls')
layers.Detect('reg')
layers.get_anchors(model.yolo_head.anchor_points.reshape([-1]), model.yolo_head.stride_tensor)
else:
raise SystemExit('Model not supported')
os.system('echo "%d" | cat - %s > temp && mv temp %s' % (layers.wc, wts_file, wts_file))

View File

@@ -9,11 +9,11 @@ from models.models import Darknet
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch YOLOR conversion (main branch)')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-c', '--cfg', help='Input cfg (.cfg) file path')
parser.add_argument('-c', '--cfg', default='', help='Input cfg (.cfg) file path')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.cfg):
if args.cfg != '' and not os.path.isfile(args.cfg):
raise SystemExit('Invalid cfg file')
return args.weights, args.cfg