Files
deepstream_yolo/utils/gen_wts_yolor.py
2022-07-24 18:00:47 -03:00

57 lines
1.9 KiB
Python

import argparse
import os
import struct
import torch
from utils.torch_utils import select_device
from models.models import Darknet
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch YOLOR conversion (main branch)')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-c', '--cfg', default='', help='Input cfg (.cfg) file path')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.cfg != '' and not os.path.isfile(args.cfg):
raise SystemExit('Invalid cfg file')
return args.weights, args.cfg
pt_file, cfg_file = parse_args()
model_name = os.path.basename(pt_file).split('.pt')[0]
wts_file = model_name + '.wts' if 'yolor' in model_name else 'yolor_' + model_name + '.wts'
new_cfg_file = model_name + '.cfg' if 'yolor' in model_name else 'yolor_' + model_name + '.cfg'
if cfg_file == '':
cfg_file = 'cfg/' + model_name + '.cfg'
if not os.path.isfile(cfg_file):
raise SystemExit('CFG file not found')
elif not os.path.isfile(cfg_file):
raise SystemExit('Invalid CFG file')
device = select_device('cpu')
model = Darknet(cfg_file).to(device)
model.load_state_dict(torch.load(pt_file, map_location=device)['model'])
model.to(device).eval()
with open(wts_file, 'w') as f:
wts_write = ''
conv_count = 0
for k, v in model.state_dict().items():
if 'num_batches_tracked' not in k:
vr = v.reshape(-1).cpu().numpy()
wts_write += '{} {} '.format(k, len(vr))
for vv in vr:
wts_write += ' '
wts_write += struct.pack('>f', float(vv)).hex()
wts_write += '\n'
conv_count += 1
f.write('{}\n'.format(conv_count))
f.write(wts_write)
if not os.path.isfile(new_cfg_file):
os.system('cp %s %s' % (cfg_file, new_cfg_file))