Add RT-DETR Ultralytics
This commit is contained in:
@@ -30,6 +30,7 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
|
|||||||
* INT8 calibration (PTQ) for Darknet and ONNX exported models
|
* INT8 calibration (PTQ) for Darknet and ONNX exported models
|
||||||
* New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
|
* New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
|
||||||
* **RT-DETR (https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch)**
|
* **RT-DETR (https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch)**
|
||||||
|
* **RT-DETR Ultralytics (https://docs.ultralytics.com/models/rtdetr)**
|
||||||
|
|
||||||
##
|
##
|
||||||
|
|
||||||
@@ -53,6 +54,7 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
|
|||||||
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
|
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
|
||||||
* [YOLO-NAS usage](docs/YOLONAS.md)
|
* [YOLO-NAS usage](docs/YOLONAS.md)
|
||||||
* [RT-DETR usage](docs/RTDETR.md)
|
* [RT-DETR usage](docs/RTDETR.md)
|
||||||
|
* [RT-DETR Ultralytics usage](docs/RTDETR_Ultralytics.md)
|
||||||
* [Using your custom model](docs/customModels.md)
|
* [Using your custom model](docs/customModels.md)
|
||||||
* [Multiple YOLO GIEs](docs/multipleGIEs.md)
|
* [Multiple YOLO GIEs](docs/multipleGIEs.md)
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
# RT_DETR usage
|
# RT-DETR usage
|
||||||
|
|
||||||
**NOTE**: For it is supported only the https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch version.
|
**NOTE**: https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch version.
|
||||||
|
|
||||||
* [Convert model](#convert-model)
|
* [Convert model](#convert-model)
|
||||||
* [Compile the lib](#compile-the-lib)
|
* [Compile the lib](#compile-the-lib)
|
||||||
|
|||||||
199
docs/RTDETR_Ultralytics.md
Normal file
199
docs/RTDETR_Ultralytics.md
Normal file
@@ -0,0 +1,199 @@
|
|||||||
|
# RT-DETR Ultralytics usage
|
||||||
|
|
||||||
|
**NOTE**: Ultralytics (https://docs.ultralytics.com/models/rtdetr) version.
|
||||||
|
|
||||||
|
* [Convert model](#convert-model)
|
||||||
|
* [Compile the lib](#compile-the-lib)
|
||||||
|
* [Edit the config_infer_primary_rtdetr file](#edit-the-config_infer_primary_rtdetr-file)
|
||||||
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
||||||
|
* [Testing the model](#testing-the-model)
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Convert model
|
||||||
|
|
||||||
|
#### 1. Download the Ultralytics repo and install the requirements
|
||||||
|
|
||||||
|
```
|
||||||
|
git clone https://github.com/ultralytics/ultralytics.git
|
||||||
|
cd ultralytics
|
||||||
|
pip3 install -r requirements.txt
|
||||||
|
python3 setup.py install
|
||||||
|
pip3 install onnx onnxsim onnxruntime
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: It is recommended to use Python virtualenv.
|
||||||
|
|
||||||
|
#### 2. Copy conversor
|
||||||
|
|
||||||
|
Copy the `export_rtdetr_ultralytics.py` file from `DeepStream-Yolo/utils` directory to the `ultralytics` folder.
|
||||||
|
|
||||||
|
#### 3. Download the model
|
||||||
|
|
||||||
|
Download the `pt` file from [Ultralytics](https://github.com/ultralytics/assets/releases/) releases (example for RT-DETR-l)
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/rtdetr-l.pt
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: You can use your custom model.
|
||||||
|
|
||||||
|
#### 4. Convert model
|
||||||
|
|
||||||
|
Generate the ONNX model file (example for RT-DETR-l)
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 export_rtdetr_ultralytics.py -w rtdetr-l.pt --dynamic
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To change the inference size (defaut: 640)
|
||||||
|
|
||||||
|
```
|
||||||
|
-s SIZE
|
||||||
|
--size SIZE
|
||||||
|
-s HEIGHT WIDTH
|
||||||
|
--size HEIGHT WIDTH
|
||||||
|
```
|
||||||
|
|
||||||
|
Example for 1280
|
||||||
|
|
||||||
|
```
|
||||||
|
-s 1280
|
||||||
|
```
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
```
|
||||||
|
-s 1280 1280
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
|
||||||
|
|
||||||
|
```
|
||||||
|
--simplify
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
|
||||||
|
|
||||||
|
```
|
||||||
|
--dynamic
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To use static batch-size (example for batch-size = 4)
|
||||||
|
|
||||||
|
```
|
||||||
|
--batch 4
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 16.
|
||||||
|
|
||||||
|
```
|
||||||
|
--opset 12
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5. Copy generated files
|
||||||
|
|
||||||
|
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Compile the lib
|
||||||
|
|
||||||
|
Open the `DeepStream-Yolo` folder and compile the lib
|
||||||
|
|
||||||
|
* DeepStream 6.3 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=12.1 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.2 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.1.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 5.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Edit the config_infer_primary_rtdetr file
|
||||||
|
|
||||||
|
Edit the `config_infer_primary_rtdetr.txt` file according to your model (example for RT-DETR-l with 80 classes)
|
||||||
|
|
||||||
|
```
|
||||||
|
[property]
|
||||||
|
...
|
||||||
|
onnx-file=rtdetr-l.onnx
|
||||||
|
...
|
||||||
|
num-detected-classes=80
|
||||||
|
...
|
||||||
|
parse-bbox-func-name=NvDsInferParseYolo
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: The **RT-DETR Ultralytics** do not resize the input with padding. To get better accuracy, use
|
||||||
|
|
||||||
|
```
|
||||||
|
[property]
|
||||||
|
...
|
||||||
|
maintain-aspect-ratio=0
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Edit the deepstream_app_config file
|
||||||
|
|
||||||
|
```
|
||||||
|
...
|
||||||
|
[primary-gie]
|
||||||
|
...
|
||||||
|
config-file=config_infer_primary_rtdetr.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Testing the model
|
||||||
|
|
||||||
|
```
|
||||||
|
deepstream-app -c deepstream_app_config.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
||||||
|
|
||||||
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|
||||||
124
utils/export_rtdetr_ultralytics.py
Executable file
124
utils/export_rtdetr_ultralytics.py
Executable file
@@ -0,0 +1,124 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import argparse
|
||||||
|
import warnings
|
||||||
|
import onnx
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from copy import deepcopy
|
||||||
|
from ultralytics import RTDETR
|
||||||
|
from ultralytics.utils.torch_utils import select_device
|
||||||
|
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
|
||||||
|
|
||||||
|
|
||||||
|
class DeepStreamOutput(nn.Module):
|
||||||
|
def __init__(self, img_size):
|
||||||
|
self.img_size = img_size
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
boxes = x[:, :, :4]
|
||||||
|
boxes[:, :, [0, 2]] *= self.img_size[1]
|
||||||
|
boxes[:, :, [1, 3]] *= self.img_size[0]
|
||||||
|
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
|
||||||
|
classes = classes.float()
|
||||||
|
return boxes, scores, classes
|
||||||
|
|
||||||
|
|
||||||
|
def suppress_warnings():
|
||||||
|
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=UserWarning)
|
||||||
|
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||||
|
|
||||||
|
|
||||||
|
def rtdetr_ultralytics_export(weights, device):
|
||||||
|
model = RTDETR(weights)
|
||||||
|
model = deepcopy(model.model).to(device)
|
||||||
|
for p in model.parameters():
|
||||||
|
p.requires_grad = False
|
||||||
|
model.eval()
|
||||||
|
model.float()
|
||||||
|
model = model.fuse()
|
||||||
|
for k, m in model.named_modules():
|
||||||
|
if isinstance(m, (Detect, RTDETRDecoder)):
|
||||||
|
m.dynamic = False
|
||||||
|
m.export = True
|
||||||
|
m.format = 'onnx'
|
||||||
|
elif isinstance(m, C2f):
|
||||||
|
m.forward = m.forward_split
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
suppress_warnings()
|
||||||
|
|
||||||
|
print('\nStarting: %s' % args.weights)
|
||||||
|
|
||||||
|
print('Opening RT-DETR Ultralytics model\n')
|
||||||
|
|
||||||
|
device = select_device('cpu')
|
||||||
|
model = rtdetr_ultralytics_export(args.weights, device)
|
||||||
|
|
||||||
|
if len(model.names.keys()) > 0:
|
||||||
|
print('\nCreating labels.txt file')
|
||||||
|
f = open('labels.txt', 'w')
|
||||||
|
for name in model.names.values():
|
||||||
|
f.write(name + '\n')
|
||||||
|
f.close()
|
||||||
|
|
||||||
|
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||||
|
|
||||||
|
model = nn.Sequential(model, DeepStreamOutput(img_size))
|
||||||
|
|
||||||
|
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||||
|
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||||
|
|
||||||
|
dynamic_axes = {
|
||||||
|
'input': {
|
||||||
|
0: 'batch'
|
||||||
|
},
|
||||||
|
'boxes': {
|
||||||
|
0: 'batch'
|
||||||
|
},
|
||||||
|
'scores': {
|
||||||
|
0: 'batch'
|
||||||
|
},
|
||||||
|
'classes': {
|
||||||
|
0: 'batch'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
print('\nExporting the model to ONNX')
|
||||||
|
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||||
|
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||||
|
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||||
|
|
||||||
|
if args.simplify:
|
||||||
|
print('Simplifying the ONNX model')
|
||||||
|
import onnxsim
|
||||||
|
model_onnx = onnx.load(onnx_output_file)
|
||||||
|
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||||
|
onnx.save(model_onnx, onnx_output_file)
|
||||||
|
|
||||||
|
print('Done: %s\n' % onnx_output_file)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser(description='DeepStream RT-DETR Ultralytics conversion')
|
||||||
|
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||||
|
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||||
|
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
|
||||||
|
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||||
|
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||||
|
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if not os.path.isfile(args.weights):
|
||||||
|
raise SystemExit('Invalid weights file')
|
||||||
|
if args.dynamic and args.batch > 1:
|
||||||
|
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
args = parse_args()
|
||||||
|
sys.exit(main(args))
|
||||||
Reference in New Issue
Block a user