Add RT-DETR Ultralytics

This commit is contained in:
Marcos Luciano
2023-11-23 21:08:37 -03:00
parent 5af9da189d
commit 758b7a0bb7
4 changed files with 327 additions and 2 deletions

View File

@@ -1,6 +1,6 @@
# RT_DETR usage
# RT-DETR usage
**NOTE**: For it is supported only the https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch version.
**NOTE**: https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch version.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)

199
docs/RTDETR_Ultralytics.md Normal file
View File

@@ -0,0 +1,199 @@
# RT-DETR Ultralytics usage
**NOTE**: Ultralytics (https://docs.ultralytics.com/models/rtdetr) version.
* [Convert model](#convert-model)
* [Compile the lib](#compile-the-lib)
* [Edit the config_infer_primary_rtdetr file](#edit-the-config_infer_primary_rtdetr-file)
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
* [Testing the model](#testing-the-model)
##
### Convert model
#### 1. Download the Ultralytics repo and install the requirements
```
git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
pip3 install -r requirements.txt
python3 setup.py install
pip3 install onnx onnxsim onnxruntime
```
**NOTE**: It is recommended to use Python virtualenv.
#### 2. Copy conversor
Copy the `export_rtdetr_ultralytics.py` file from `DeepStream-Yolo/utils` directory to the `ultralytics` folder.
#### 3. Download the model
Download the `pt` file from [Ultralytics](https://github.com/ultralytics/assets/releases/) releases (example for RT-DETR-l)
```
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/rtdetr-l.pt
```
**NOTE**: You can use your custom model.
#### 4. Convert model
Generate the ONNX model file (example for RT-DETR-l)
```
python3 export_rtdetr_ultralytics.py -w rtdetr-l.pt --dynamic
```
**NOTE**: To change the inference size (defaut: 640)
```
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
```
Example for 1280
```
-s 1280
```
or
```
-s 1280 1280
```
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
```
--simplify
```
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
```
--dynamic
```
**NOTE**: To use static batch-size (example for batch-size = 4)
```
--batch 4
```
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 16.
```
--opset 12
```
#### 5. Copy generated files
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
##
### Compile the lib
Open the `DeepStream-Yolo` folder and compile the lib
* DeepStream 6.3 on x86 platform
```
CUDA_VER=12.1 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.2 on x86 platform
```
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1.1 on x86 platform
```
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.1 on x86 platform
```
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 on x86 platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 5.1 on x86 platform
```
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 on Jetson platform
```
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
##
### Edit the config_infer_primary_rtdetr file
Edit the `config_infer_primary_rtdetr.txt` file according to your model (example for RT-DETR-l with 80 classes)
```
[property]
...
onnx-file=rtdetr-l.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
```
**NOTE**: The **RT-DETR Ultralytics** do not resize the input with padding. To get better accuracy, use
```
[property]
...
maintain-aspect-ratio=0
...
```
##
### Edit the deepstream_app_config file
```
...
[primary-gie]
...
config-file=config_infer_primary_rtdetr.txt
```
##
### Testing the model
```
deepstream-app -c deepstream_app_config.txt
```
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.