Fix logger error in DeepStream 6.0 / 6.0.1 + Change output classes format + Fixes
This commit is contained in:
@@ -18,6 +18,7 @@ class DeepStreamOutput(nn.Module):
|
||||
def forward(self, x):
|
||||
boxes = x[1]
|
||||
scores, classes = torch.max(x[0], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ class DeepStreamOutput(nn.Layer):
|
||||
boxes = x['bbox']
|
||||
x['bbox_num'] = x['bbox_num'].transpose([0, 2, 1])
|
||||
scores = paddle.max(x['bbox_num'], 2, keepdim=True)
|
||||
classes = paddle.argmax(x['bbox_num'], 2, keepdim=True)
|
||||
classes = paddle.cast(paddle.argmax(x['bbox_num'], 2, keepdim=True), dtype='float32')
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -20,6 +20,7 @@ class DeepStreamOutput(nn.Module):
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -24,6 +24,7 @@ class DeepStreamOutput(nn.Module):
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -20,6 +20,7 @@ class DeepStreamOutput(nn.Module):
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -18,6 +18,7 @@ class DeepStreamOutput(nn.Module):
|
||||
x = x.transpose(1, 2)
|
||||
boxes = x[:, :, :4]
|
||||
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -19,6 +19,7 @@ class DeepStreamOutput(nn.Module):
|
||||
x = x.transpose(1, 2)
|
||||
boxes = x[:, :, :4]
|
||||
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@ class DeepStreamOutput(nn.Module):
|
||||
def forward(self, x):
|
||||
boxes = x[0]
|
||||
scores, classes = torch.max(x[1], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -17,6 +17,7 @@ class DeepStreamOutput(nn.Module):
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
@@ -19,6 +19,7 @@ class DeepStreamOutput(nn.Module):
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user