Files
deepstream_yolo/utils/export_damoyolo.py

124 lines
4.0 KiB
Python

import os
import sys
import argparse
import warnings
import onnx
import torch
import torch.nn as nn
from damo.base_models.core.ops import RepConv, SiLU
from damo.config.base import parse_config
from damo.detectors.detector import build_local_model
from damo.utils.model_utils import replace_module
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
boxes = x[1]
scores, classes = torch.max(x[0], 2, keepdim=True)
classes = classes.float()
return boxes, scores, classes
def suppress_warnings():
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
def damoyolo_export(weights, config_file, device):
config = parse_config(config_file)
config.model.head.export_with_post = True
model = build_local_model(config, device)
ckpt = torch.load(weights, map_location=device)
model.eval()
if 'model' in ckpt:
ckpt = ckpt['model']
model.load_state_dict(ckpt, strict=True)
model = replace_module(model, nn.SiLU, SiLU)
for layer in model.modules():
if isinstance(layer, RepConv):
layer.switch_to_deploy()
model.head.nms = False
return config, model
def main(args):
suppress_warnings()
print('\nStarting: %s' % args.weights)
print('Opening DAMO-YOLO model')
device = torch.device('cpu')
cfg, model = damoyolo_export(args.weights, args.config, device)
if len(cfg.dataset['class_names']) > 0:
print('Creating labels.txt file')
f = open('labels.txt', 'w')
for name in cfg.dataset['class_names']:
f.write(name + '\n')
f.close()
model = nn.Sequential(model, DeepStreamOutput())
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = cfg.miscs['exp_name'] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
print('Simplifying the ONNX model')
import onnxsim
model_onnx = onnx.load(onnx_output_file)
model_onnx, _ = onnxsim.simplify(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print('Done: %s\n' % onnx_output_file)
def parse_args():
parser = argparse.ArgumentParser(description='DeepStream DAMO-YOLO conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.config):
raise SystemExit('Invalid config file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args))