Minor fixes

This commit is contained in:
Marcos Luciano
2022-02-21 23:46:29 -03:00
parent 66962cfeb8
commit 555152064e
29 changed files with 416 additions and 541 deletions

View File

@@ -18,7 +18,7 @@
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
@@ -29,10 +29,8 @@
#include <iostream>
#include <memory>
int kMODEL_TYPE;
int kNUM_BBOXES;
int kNUM_CLASSES;
float kBETA_NMS;
uint kNUM_BBOXES;
uint kNUM_CLASSES;
namespace {
template <typename T>
@@ -50,42 +48,40 @@ namespace {
}
}
cudaError_t cudaYoloLayer_r (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float scaleXY,
const void* anchors, const void* mask);
cudaError_t cudaYoloLayer_r(
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_nc (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float scaleXY,
const void* anchors, const void* mask);
cudaError_t cudaYoloLayer_nc(
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float scaleXY,
const void* anchors, const void* mask);
cudaError_t cudaYoloLayer(
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_v2 (
const void* input, void* output, void* softmax, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const void* anchors);
cudaError_t cudaRegionLayer(
const void* input, void* output, void* softmax, const uint& batchSize, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t& outputSize, const void* anchors, cudaStream_t stream);
YoloLayer::YoloLayer (const void* data, size_t length)
{
const char *d = static_cast<const char*>(data);
read(d, m_NumBoxes);
read(d, m_NumBBoxes);
read(d, m_NumClasses);
read(d, m_NetWidth);
read(d, m_NetHeight);
read(d, m_GridSizeX);
read(d, m_GridSizeY);
read(d, m_OutputSize);
read(d, m_Type);
read(d, m_NewCoords);
read(d, m_ScaleXY);
read(d, m_BetaNMS);
read(d, m_OutputSize);
uint anchorsSize;
read(d, anchorsSize);
@@ -103,63 +99,71 @@ YoloLayer::YoloLayer (const void* data, size_t length)
m_Mask.push_back(result);
}
kMODEL_TYPE = m_Type;
kNUM_BBOXES = m_NumBoxes;
kNUM_CLASSES = m_NumClasses;
kBETA_NMS = m_BetaNMS;
if (m_Anchors.size() > 0) {
float* m_anchors = m_Anchors.data();
CHECK(cudaMallocHost(&mAnchors, m_Anchors.size() * sizeof(float)));
CHECK(cudaMemcpy(mAnchors, m_anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
float* anchors = m_Anchors.data();
CUDA_CHECK(cudaMallocHost(&p_Anchors, m_Anchors.size() * sizeof(float)));
CUDA_CHECK(cudaMemcpy(p_Anchors, anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
}
if (m_Mask.size() > 0) {
int* m_mask = m_Mask.data();
CHECK(cudaMallocHost(&mMask, m_Mask.size() * sizeof(int)));
CHECK(cudaMemcpy(mMask, m_mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
int* mask = m_Mask.data();
CUDA_CHECK(cudaMallocHost(&p_Mask, m_Mask.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(p_Mask, mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
}
kNUM_BBOXES = m_NumBBoxes;
kNUM_CLASSES = m_NumClasses;
};
YoloLayer::YoloLayer (
const uint& numBoxes, const uint& numClasses, const uint& gridSizeX, const uint& gridSizeY, const uint modelType, const uint newCoords, const float scaleXY, const float betaNMS, const std::vector<float> anchors, std::vector<int> mask) :
m_NumBoxes(numBoxes),
const uint& numBBoxes, const uint& numClasses, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& modelType, const uint& newCoords,
const float& scaleXY, const std::vector<float> anchors,
const std::vector<int> mask) :
m_NumBBoxes(numBBoxes),
m_NumClasses(numClasses),
m_NetWidth(netWidth),
m_NetHeight(netHeight),
m_GridSizeX(gridSizeX),
m_GridSizeY(gridSizeY),
m_Type(modelType),
m_NewCoords(newCoords),
m_ScaleXY(scaleXY),
m_BetaNMS(betaNMS),
m_Anchors(anchors),
m_Mask(mask)
{
assert(m_NumBoxes > 0);
assert(m_NumBBoxes > 0);
assert(m_NumClasses > 0);
assert(m_NetWidth > 0);
assert(m_NetHeight > 0);
assert(m_GridSizeX > 0);
assert(m_GridSizeY > 0);
m_OutputSize = m_GridSizeX * m_GridSizeY * (m_NumBoxes * (4 + 1 + m_NumClasses));
m_OutputSize = m_GridSizeX * m_GridSizeY * (m_NumBBoxes * (4 + 1 + m_NumClasses));
if (m_Anchors.size() > 0) {
float* m_anchors = m_Anchors.data();
CHECK(cudaMallocHost(&mAnchors, m_Anchors.size() * sizeof(float)));
CHECK(cudaMemcpy(mAnchors, m_anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
float* anchors = m_Anchors.data();
CUDA_CHECK(cudaMallocHost(&p_Anchors, m_Anchors.size() * sizeof(float)));
CUDA_CHECK(cudaMemcpy(p_Anchors, anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
}
if (m_Mask.size() > 0) {
int* m_mask = m_Mask.data();
CHECK(cudaMallocHost(&mMask, m_Mask.size() * sizeof(int)));
CHECK(cudaMemcpy(mMask, m_mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
int* mask = m_Mask.data();
CUDA_CHECK(cudaMallocHost(&p_Mask, m_Mask.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(p_Mask, mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
}
kNUM_BBOXES = m_NumBBoxes;
kNUM_CLASSES = m_NumClasses;
};
YoloLayer::~YoloLayer()
{
if (m_Anchors.size() > 0) {
CHECK(cudaFreeHost(mAnchors));
CUDA_CHECK(cudaFreeHost(p_Anchors));
}
if (m_Mask.size() > 0) {
CHECK(cudaFreeHost(mMask));
CUDA_CHECK(cudaFreeHost(p_Mask));
}
}
@@ -185,73 +189,79 @@ YoloLayer::configureWithFormat (
nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
{
assert(nbInputs == 1);
assert (format == nvinfer1::PluginFormat::kLINEAR);
assert(format == nvinfer1::PluginFormat::kLINEAR);
assert(inputDims != nullptr);
}
int YoloLayer::enqueue(
int YoloLayer::enqueue (
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
CHECK(cudaYoloLayer_r(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, 2.0, mAnchors, mMask));
CUDA_CHECK(cudaYoloLayer_r(
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, 2.0, p_Anchors, p_Mask, stream));
}
else if (m_Type == 1) {
if (m_NewCoords) {
CHECK(cudaYoloLayer_nc(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_ScaleXY, mAnchors, mMask));
CUDA_CHECK(cudaYoloLayer_nc(
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, m_ScaleXY, p_Anchors, p_Mask, stream));
}
else {
CHECK(cudaYoloLayer(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_ScaleXY, mAnchors, mMask));
CUDA_CHECK(cudaYoloLayer(
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, m_ScaleXY, p_Anchors, p_Mask, stream));
}
}
else {
void* softmax;
CHECK(cudaMallocHost(&softmax, sizeof(outputs[0])));
CHECK(cudaMemcpy(softmax, outputs[0], sizeof(outputs[0]), cudaMemcpyHostToDevice));
cudaMallocHost(&softmax, sizeof(outputs[0]));
cudaMemcpy(softmax, outputs[0], sizeof(outputs[0]), cudaMemcpyHostToDevice);
CHECK(cudaYoloLayer_v2(
inputs[0], outputs[0], softmax, batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, mAnchors));
CUDA_CHECK(cudaRegionLayer(
inputs[0], outputs[0], softmax, batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, p_Anchors, stream));
CHECK(cudaFreeHost(softmax));
CUDA_CHECK(cudaFreeHost(softmax));
}
return 0;
}
size_t YoloLayer::getSerializationSize() const noexcept
{
int anchorsSum = 1;
for (uint i = 0; i < m_Anchors.size(); i++) {
anchorsSum += 1;
}
int maskSum = 1;
for (uint i = 0; i < m_Mask.size(); i++) {
maskSum += 1;
}
size_t totalSize = 0;
return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSizeX) + sizeof(m_GridSizeY) + sizeof(m_OutputSize) + sizeof(m_Type)
+ sizeof(m_NewCoords) + sizeof(m_ScaleXY) + sizeof(m_BetaNMS) + anchorsSum * sizeof(float) + maskSum * sizeof(int);
totalSize += sizeof(m_NumBBoxes);
totalSize += sizeof(m_NumClasses);
totalSize += sizeof(m_NetWidth);
totalSize += sizeof(m_NetHeight);
totalSize += sizeof(m_GridSizeX);
totalSize += sizeof(m_GridSizeY);
totalSize += sizeof(m_Type);
totalSize += sizeof(m_NewCoords);
totalSize += sizeof(m_ScaleXY);
totalSize += sizeof(m_OutputSize);
totalSize += sizeof(uint) + sizeof(m_Anchors[0]) * m_Anchors.size();
totalSize += sizeof(uint) + sizeof(m_Mask[0]) * m_Mask.size();
return totalSize;
}
void YoloLayer::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer);
write(d, m_NumBoxes);
write(d, m_NumBBoxes);
write(d, m_NumClasses);
write(d, m_NetWidth);
write(d, m_NetHeight);
write(d, m_GridSizeX);
write(d, m_GridSizeY);
write(d, m_OutputSize);
write(d, m_Type);
write(d, m_NewCoords);
write(d, m_ScaleXY);
write(d, m_BetaNMS);
write(d, m_OutputSize);
uint anchorsSize = m_Anchors.size();
write(d, anchorsSize);
@@ -264,16 +274,13 @@ void YoloLayer::serialize(void* buffer) const noexcept
for (uint i = 0; i < maskSize; i++) {
write(d, m_Mask[i]);
}
kMODEL_TYPE = m_Type;
kNUM_BBOXES = m_NumBoxes;
kNUM_CLASSES = m_NumClasses;
kBETA_NMS = m_BetaNMS;
}
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
{
return new YoloLayer (m_NumBoxes, m_NumClasses, m_GridSizeX, m_GridSizeY, m_Type, m_NewCoords, m_ScaleXY, m_BetaNMS, m_Anchors, m_Mask);
return new YoloLayer (
m_NumBBoxes, m_NumClasses, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY, m_Type,
m_NewCoords, m_ScaleXY, m_Anchors, m_Mask);
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);