Files
deepstream_yolo/nvdsinfer_custom_impl_Yolo/yoloPlugins.cpp
Marcos Luciano 555152064e Minor fixes
2022-02-21 23:46:29 -03:00

287 lines
9.6 KiB
C++

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "yoloPlugins.h"
#include "NvInferPlugin.h"
#include <cassert>
#include <iostream>
#include <memory>
uint kNUM_BBOXES;
uint kNUM_CLASSES;
namespace {
template <typename T>
void write(char*& buffer, const T& val)
{
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template <typename T>
void read(const char*& buffer, T& val)
{
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
}
cudaError_t cudaYoloLayer_r(
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_nc(
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer(
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaRegionLayer(
const void* input, void* output, void* softmax, const uint& batchSize, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t& outputSize, const void* anchors, cudaStream_t stream);
YoloLayer::YoloLayer (const void* data, size_t length)
{
const char *d = static_cast<const char*>(data);
read(d, m_NumBBoxes);
read(d, m_NumClasses);
read(d, m_NetWidth);
read(d, m_NetHeight);
read(d, m_GridSizeX);
read(d, m_GridSizeY);
read(d, m_Type);
read(d, m_NewCoords);
read(d, m_ScaleXY);
read(d, m_OutputSize);
uint anchorsSize;
read(d, anchorsSize);
for (uint i = 0; i < anchorsSize; i++) {
float result;
read(d, result);
m_Anchors.push_back(result);
}
uint maskSize;
read(d, maskSize);
for (uint i = 0; i < maskSize; i++) {
int result;
read(d, result);
m_Mask.push_back(result);
}
if (m_Anchors.size() > 0) {
float* anchors = m_Anchors.data();
CUDA_CHECK(cudaMallocHost(&p_Anchors, m_Anchors.size() * sizeof(float)));
CUDA_CHECK(cudaMemcpy(p_Anchors, anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
}
if (m_Mask.size() > 0) {
int* mask = m_Mask.data();
CUDA_CHECK(cudaMallocHost(&p_Mask, m_Mask.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(p_Mask, mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
}
kNUM_BBOXES = m_NumBBoxes;
kNUM_CLASSES = m_NumClasses;
};
YoloLayer::YoloLayer (
const uint& numBBoxes, const uint& numClasses, const uint& netWidth, const uint& netHeight,
const uint& gridSizeX, const uint& gridSizeY, const uint& modelType, const uint& newCoords,
const float& scaleXY, const std::vector<float> anchors,
const std::vector<int> mask) :
m_NumBBoxes(numBBoxes),
m_NumClasses(numClasses),
m_NetWidth(netWidth),
m_NetHeight(netHeight),
m_GridSizeX(gridSizeX),
m_GridSizeY(gridSizeY),
m_Type(modelType),
m_NewCoords(newCoords),
m_ScaleXY(scaleXY),
m_Anchors(anchors),
m_Mask(mask)
{
assert(m_NumBBoxes > 0);
assert(m_NumClasses > 0);
assert(m_NetWidth > 0);
assert(m_NetHeight > 0);
assert(m_GridSizeX > 0);
assert(m_GridSizeY > 0);
m_OutputSize = m_GridSizeX * m_GridSizeY * (m_NumBBoxes * (4 + 1 + m_NumClasses));
if (m_Anchors.size() > 0) {
float* anchors = m_Anchors.data();
CUDA_CHECK(cudaMallocHost(&p_Anchors, m_Anchors.size() * sizeof(float)));
CUDA_CHECK(cudaMemcpy(p_Anchors, anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
}
if (m_Mask.size() > 0) {
int* mask = m_Mask.data();
CUDA_CHECK(cudaMallocHost(&p_Mask, m_Mask.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(p_Mask, mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
}
kNUM_BBOXES = m_NumBBoxes;
kNUM_CLASSES = m_NumClasses;
};
YoloLayer::~YoloLayer()
{
if (m_Anchors.size() > 0) {
CUDA_CHECK(cudaFreeHost(p_Anchors));
}
if (m_Mask.size() > 0) {
CUDA_CHECK(cudaFreeHost(p_Mask));
}
}
nvinfer1::Dims
YoloLayer::getOutputDimensions(
int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
{
assert(index == 0);
assert(nbInputDims == 1);
return inputs[0];
}
bool YoloLayer::supportsFormat (
nvinfer1::DataType type, nvinfer1::PluginFormat format) const noexcept {
return (type == nvinfer1::DataType::kFLOAT &&
format == nvinfer1::PluginFormat::kLINEAR);
}
void
YoloLayer::configureWithFormat (
const nvinfer1::Dims* inputDims, int nbInputs,
const nvinfer1::Dims* outputDims, int nbOutputs,
nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
{
assert(nbInputs == 1);
assert(format == nvinfer1::PluginFormat::kLINEAR);
assert(inputDims != nullptr);
}
int YoloLayer::enqueue (
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
CUDA_CHECK(cudaYoloLayer_r(
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, 2.0, p_Anchors, p_Mask, stream));
}
else if (m_Type == 1) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc(
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, m_ScaleXY, p_Anchors, p_Mask, stream));
}
else {
CUDA_CHECK(cudaYoloLayer(
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, m_ScaleXY, p_Anchors, p_Mask, stream));
}
}
else {
void* softmax;
cudaMallocHost(&softmax, sizeof(outputs[0]));
cudaMemcpy(softmax, outputs[0], sizeof(outputs[0]), cudaMemcpyHostToDevice);
CUDA_CHECK(cudaRegionLayer(
inputs[0], outputs[0], softmax, batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
m_NumClasses, m_NumBBoxes, m_OutputSize, p_Anchors, stream));
CUDA_CHECK(cudaFreeHost(softmax));
}
return 0;
}
size_t YoloLayer::getSerializationSize() const noexcept
{
size_t totalSize = 0;
totalSize += sizeof(m_NumBBoxes);
totalSize += sizeof(m_NumClasses);
totalSize += sizeof(m_NetWidth);
totalSize += sizeof(m_NetHeight);
totalSize += sizeof(m_GridSizeX);
totalSize += sizeof(m_GridSizeY);
totalSize += sizeof(m_Type);
totalSize += sizeof(m_NewCoords);
totalSize += sizeof(m_ScaleXY);
totalSize += sizeof(m_OutputSize);
totalSize += sizeof(uint) + sizeof(m_Anchors[0]) * m_Anchors.size();
totalSize += sizeof(uint) + sizeof(m_Mask[0]) * m_Mask.size();
return totalSize;
}
void YoloLayer::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer);
write(d, m_NumBBoxes);
write(d, m_NumClasses);
write(d, m_NetWidth);
write(d, m_NetHeight);
write(d, m_GridSizeX);
write(d, m_GridSizeY);
write(d, m_Type);
write(d, m_NewCoords);
write(d, m_ScaleXY);
write(d, m_OutputSize);
uint anchorsSize = m_Anchors.size();
write(d, anchorsSize);
for (uint i = 0; i < anchorsSize; i++) {
write(d, m_Anchors[i]);
}
uint maskSize = m_Mask.size();
write(d, maskSize);
for (uint i = 0; i < maskSize; i++) {
write(d, m_Mask[i]);
}
}
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
{
return new YoloLayer (
m_NumBBoxes, m_NumClasses, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY, m_Type,
m_NewCoords, m_ScaleXY, m_Anchors, m_Mask);
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);