Add DAMO-YOLO benchmarks + Add GPU bbox parser + Fixes

This commit is contained in:
Marcos Luciano
2023-05-22 01:14:42 -03:00
parent f9bfd65036
commit 134960d389
2 changed files with 205 additions and 2 deletions

View File

@@ -23,6 +23,7 @@ NVIDIA DeepStream SDK 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 configuration for YOLO mod
* Models benchmarks
* **Support for Darknet YOLO models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing**
* **Support for YOLO-NAS, PPYOLOE+, PPYOLOE, DAMO-YOLO, YOLOX, YOLOR, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing**
* **Add GPU bbox parser (it is slightly slower than CPU bbox parser on V100 GPU tests)**
##
@@ -153,7 +154,7 @@ sample = 1920x1080 video
- Eval
```
nms-iou-threshold = 0.6 (Darknet) / 0.65 (YOLOv5, YOLOv6, YOLOv7, YOLOR and YOLOX) / 0.7 (Paddle, YOLO-NAS, YOLOv8 and YOLOv7-u6)
nms-iou-threshold = 0.6 (Darknet) / 0.65 (YOLOv5, YOLOv6, YOLOv7, YOLOR and YOLOX) / 0.7 (Paddle, YOLO-NAS, DAMO-YOLO, YOLOv8 and YOLOv7-u6)
pre-cluster-threshold = 0.001
topk = 300
```
@@ -172,7 +173,11 @@ topk = 300
**NOTE**: ** = The YOLOv4 is trained with the trainvalno5k set, so the mAP is high on val2017 test.
**NOTE**: The V100 GPU decoder seems to max out at 625-635 FPS on DeepStream even using lighter models.
**NOTE**: star = DAMO-YOLO model trained with distillation.
**NOTE**: The V100 GPU decoder max out at 625-635 FPS on DeepStream even using lighter models.
**NOTE**: The GPU bbox parser is a bit slower than CPU bbox parser on V100 GPU tests.
| DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(without display) |
|:------------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:--------------------------:|
@@ -184,6 +189,14 @@ topk = 300
| PP-YOLOE+_m | FP16 | 640 | 0.483 | 0.658 | 0.528 | 264.39 |
| PP-YOLOE+_s | FP16 | 640 | 0.424 | 0.594 | 0.464 | 476.13 |
| PP-YOLOE-s (400) | FP16 | 640 | 0.423 | 0.589 | 0.463 | 461.23 |
| DAMO-YOLO-L star | FP16 | 640 | 0.502 | 0.674 | 0.551 | 176.93 |
| DAMO-YOLO-M star | FP16 | 640 | 0.485 | 0.656 | 0.530 | 242.24 |
| DAMO-YOLO-S star | FP16 | 640 | 0.460 | 0.631 | 0.502 | 385.09 |
| DAMO-YOLO-S | FP16 | 640 | 0.445 | 0.611 | 0.486 | 378.68 |
| DAMO-YOLO-T star | FP16 | 640 | 0.419 | 0.586 | 0.455 | 492.24 |
| DAMO-YOLO-Nl | FP16 | 416 | 0.392 | 0.559 | 0.423 | 483.73 |
| DAMO-YOLO-Nm | FP16 | 416 | 0.371 | 0.532 | 0.402 | 555.94 |
| DAMO-YOLO-Ns | FP16 | 416 | 0.312 | 0.460 | 0.335 | 627.67 |
| YOLOX-x | FP16 | 640 | 0.447 | 0.616 | 0.483 | 125.40 |
| YOLOX-l | FP16 | 640 | 0.430 | 0.598 | 0.466 | 193.10 |
| YOLOX-m | FP16 | 640 | 0.397 | 0.566 | 0.431 | 298.61 |

View File

@@ -0,0 +1,190 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include <algorithm>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include "nvdsinfer_custom_impl.h"
extern "C" bool
NvDsInferParseYolo_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
extern "C" bool
NvDsInferParseYoloE_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
__global__ void decodeTensorYolo_cuda(NvDsInferParseObjectInfo *binfo, float* input, int outputSize, int netW, int netH,
float minPreclusterThreshold)
{
int x_id = blockIdx.x * blockDim.x + threadIdx.x;
if (x_id >= outputSize)
return;
float maxProb = input[x_id * 6 + 4];
int maxIndex = (int) input[x_id * 6 + 5];
if (maxProb < minPreclusterThreshold) {
binfo[x_id].detectionConfidence = 0.0;
return;
}
float bxc = input[x_id * 6 + 0];
float byc = input[x_id * 6 + 1];
float bw = input[x_id * 6 + 2];
float bh = input[x_id * 6 + 3];
float x0 = bxc - bw / 2;
float y0 = byc - bh / 2;
float x1 = x0 + bw;
float y1 = y0 + bh;
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
binfo[x_id].left = x0;
binfo[x_id].top = y0;
binfo[x_id].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
binfo[x_id].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
binfo[x_id].detectionConfidence = maxProb;
binfo[x_id].classId = maxIndex;
}
__global__ void decodeTensorYoloE_cuda(NvDsInferParseObjectInfo *binfo, float* input, int outputSize, int netW, int netH,
float minPreclusterThreshold)
{
int x_id = blockIdx.x * blockDim.x + threadIdx.x;
if (x_id >= outputSize)
return;
float maxProb = input[x_id * 6 + 4];
int maxIndex = (int) input[x_id * 6 + 5];
if (maxProb < minPreclusterThreshold) {
binfo[x_id].detectionConfidence = 0.0;
return;
}
float x0 = input[x_id * 6 + 0];
float y0 = input[x_id * 6 + 1];
float x1 = input[x_id * 6 + 2];
float y1 = input[x_id * 6 + 3];
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
x1 = fminf(float(netW), fmaxf(float(0.0), x1));
y1 = fminf(float(netH), fmaxf(float(0.0), y1));
binfo[x_id].left = x0;
binfo[x_id].top = y0;
binfo[x_id].width = fminf(float(netW), fmaxf(float(0.0), x1 - x0));
binfo[x_id].height = fminf(float(netH), fmaxf(float(0.0), y1 - y0));
binfo[x_id].detectionConfidence = maxProb;
binfo[x_id].classId = maxIndex;
}
static bool NvDsInferParseCustomYolo_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList)
{
if (outputLayersInfo.empty()) {
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
return false;
}
const NvDsInferLayerInfo &layer = outputLayersInfo[0];
const int outputSize = layer.inferDims.d[0];
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
float minPreclusterThreshold = *(std::min_element(detectionParams.perClassPreclusterThreshold.begin(),
detectionParams.perClassPreclusterThreshold.end()));
int threads_per_block = 1024;
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
decodeTensorYolo_cuda<<<number_of_blocks, threads_per_block>>>(
thrust::raw_pointer_cast(objects.data()), (float*) layer.buffer, outputSize, networkInfo.width, networkInfo.height,
minPreclusterThreshold);
objectList.resize(outputSize);
thrust::copy(objects.begin(), objects.end(), objectList.begin());
return true;
}
static bool NvDsInferParseCustomYoloE_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList)
{
if (outputLayersInfo.empty()) {
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
return false;
}
const NvDsInferLayerInfo &layer = outputLayersInfo[0];
const int outputSize = layer.inferDims.d[0];
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
float minPreclusterThreshold = *(std::min_element(detectionParams.perClassPreclusterThreshold.begin(),
detectionParams.perClassPreclusterThreshold.end()));
int threads_per_block = 1024;
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
decodeTensorYoloE_cuda<<<number_of_blocks, threads_per_block>>>(
thrust::raw_pointer_cast(objects.data()), (float*) layer.buffer, outputSize, networkInfo.width, networkInfo.height,
minPreclusterThreshold);
objectList.resize(outputSize);
thrust::copy(objects.begin(), objects.end(), objectList.begin());
return true;
}
extern "C" bool
NvDsInferParseYolo_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
return NvDsInferParseCustomYolo_cuda(outputLayersInfo, networkInfo, detectionParams, objectList);
}
extern "C" bool
NvDsInferParseYoloE_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
return NvDsInferParseCustomYoloE_cuda(outputLayersInfo, networkInfo, detectionParams, objectList);
}
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo_cuda);
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloE_cuda);