Big update
This commit is contained in:
88
utils/export_yoloV6.py
Normal file
88
utils/export_yoloV6.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from yolov6.utils.checkpoint import load_checkpoint
|
||||
from yolov6.layers.common import RepVGGBlock, ConvModule, SiLU
|
||||
from yolov6.models.effidehead import Detect
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
print(x)
|
||||
boxes = x[:, :, :4]
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
return torch.cat((boxes, scores, classes, objectness), dim=2)
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
|
||||
|
||||
def yolov6_export(weights, device):
|
||||
model = load_checkpoint(weights, map_location=device, inplace=True, fuse=True)
|
||||
for layer in model.modules():
|
||||
if isinstance(layer, RepVGGBlock):
|
||||
layer.switch_to_deploy()
|
||||
elif isinstance(layer, nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
|
||||
layer.recompute_scale_factor = None
|
||||
model.eval()
|
||||
for k, m in model.named_modules():
|
||||
if isinstance(m, ConvModule):
|
||||
if hasattr(m, 'act') and isinstance(m.act, nn.SiLU):
|
||||
m.act = SiLU()
|
||||
elif isinstance(m, Detect):
|
||||
m.inplace = False
|
||||
return model
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
device = torch.device('cpu')
|
||||
model = yolov6_export(args.weights, device)
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
if img_size == [640, 640] and args.p6:
|
||||
img_size = [1280] * 2
|
||||
|
||||
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=None)
|
||||
|
||||
if args.simplify:
|
||||
import onnxsim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOv6 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--p6', action='store_true', help='P6 model')
|
||||
parser.add_argument('--opset', type=int, default=13, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
Reference in New Issue
Block a user