Files
deepstream_yolo/utils/export_yoloV6.py
Marcos Luciano 07feae9509 Big update
2023-05-19 03:05:43 -03:00

89 lines
3.1 KiB
Python

import os
import sys
import argparse
import warnings
import onnx
import torch
import torch.nn as nn
from yolov6.utils.checkpoint import load_checkpoint
from yolov6.layers.common import RepVGGBlock, ConvModule, SiLU
from yolov6.models.effidehead import Detect
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
print(x)
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
return torch.cat((boxes, scores, classes, objectness), dim=2)
def suppress_warnings():
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
def yolov6_export(weights, device):
model = load_checkpoint(weights, map_location=device, inplace=True, fuse=True)
for layer in model.modules():
if isinstance(layer, RepVGGBlock):
layer.switch_to_deploy()
elif isinstance(layer, nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
layer.recompute_scale_factor = None
model.eval()
for k, m in model.named_modules():
if isinstance(m, ConvModule):
if hasattr(m, 'act') and isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, Detect):
m.inplace = False
return model
def main(args):
suppress_warnings()
device = torch.device('cpu')
model = yolov6_export(args.weights, device)
model = nn.Sequential(model, DeepStreamOutput())
img_size = args.size * 2 if len(args.size) == 1 else args.size
if img_size == [640, 640] and args.p6:
img_size = [1280] * 2
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=None)
if args.simplify:
import onnxsim
model_onnx = onnx.load(onnx_output_file)
model_onnx, _ = onnxsim.simplify(model_onnx)
onnx.save(model_onnx, onnx_output_file)
def parse_args():
parser = argparse.ArgumentParser(description='DeepStream YOLOv6 conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--p6', action='store_true', help='P6 model')
parser.add_argument('--opset', type=int, default=13, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
return args
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args))