🏗️ Support for up to 6 linear axes (#19112)

Co-authored-by: Scott Lahteine <github@thinkyhead.com>
This commit is contained in:
DerAndere
2021-06-05 09:18:47 +02:00
committed by GitHub
parent 733d5fd57d
commit 7726af9c53
98 changed files with 5040 additions and 2256 deletions

View File

@@ -73,11 +73,23 @@
#if BOTH(CALIBRATION_MEASURE_LEFT, CALIBRATION_MEASURE_RIGHT)
#define HAS_X_CENTER 1
#endif
#if BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
#if HAS_Y_AXIS && BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
#define HAS_Y_CENTER 1
#endif
#if LINEAR_AXES >= 4 && BOTH(CALIBRATION_MEASURE_IMIN, CALIBRATION_MEASURE_IMAX)
#define HAS_I_CENTER 1
#endif
#if LINEAR_AXES >= 5 && BOTH(CALIBRATION_MEASURE_JMIN, CALIBRATION_MEASURE_JMAX)
#define HAS_J_CENTER 1
#endif
#if LINEAR_AXES >= 6 && BOTH(CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
#define HAS_K_CENTER 1
#endif
enum side_t : uint8_t { TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES };
enum side_t : uint8_t {
TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM)
};
static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
static constexpr xyz_float_t dimensions CALIBRATION_OBJECT_DIMENSIONS;
@@ -105,7 +117,7 @@ struct measurements_t {
#endif
inline void calibration_move() {
do_blocking_move_to(current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
do_blocking_move_to((xyz_pos_t)current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
}
/**
@@ -174,7 +186,7 @@ float measuring_movement(const AxisEnum axis, const int dir, const bool stop_sta
destination = current_position;
for (float travel = 0; travel < limit; travel += step) {
destination[axis] += dir * step;
do_blocking_move_to(destination, mms);
do_blocking_move_to((xyz_pos_t)destination, mms);
planner.synchronize();
if (read_calibration_pin() == stop_state) break;
}
@@ -209,7 +221,7 @@ inline float measure(const AxisEnum axis, const int dir, const bool stop_state,
// Move back to the starting position
destination = current_position;
destination[axis] = start_pos;
do_blocking_move_to(destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
do_blocking_move_to((xyz_pos_t)destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
return measured_pos;
}
@@ -230,7 +242,15 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
park_above_object(m, uncertainty);
switch (side) {
#if AXIS_CAN_CALIBRATE(Z)
#if AXIS_CAN_CALIBRATE(X)
case RIGHT: dir = -1;
case LEFT: axis = X_AXIS; break;
#endif
#if LINEAR_AXES >= 2 && AXIS_CAN_CALIBRATE(Y)
case BACK: dir = -1;
case FRONT: axis = Y_AXIS; break;
#endif
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
case TOP: {
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center.z = measurement - dimensions.z / 2;
@@ -238,13 +258,17 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
return;
}
#endif
#if AXIS_CAN_CALIBRATE(X)
case RIGHT: dir = -1;
case LEFT: axis = X_AXIS; break;
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
case IMINIMUM: dir = -1;
case IMAXIMUM: axis = I_AXIS; break;
#endif
#if AXIS_CAN_CALIBRATE(Y)
case BACK: dir = -1;
case FRONT: axis = Y_AXIS; break;
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
case JMINIMUM: dir = -1;
case JMAXIMUM: axis = J_AXIS; break;
#endif
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
case KMINIMUM: dir = -1;
case KMAXIMUM: axis = K_AXIS; break;
#endif
default: return;
}
@@ -289,14 +313,23 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
probe_side(m, uncertainty, TOP);
#endif
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMIN, probe_side(m, uncertainty, IMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_IMAX, probe_side(m, uncertainty, IMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMIN, probe_side(m, uncertainty, JMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
// Compute the measured center of the calibration object.
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
// Compute the outside diameter of the nozzle at the height
// at which it makes contact with the calibration object
@@ -310,14 +343,17 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
LINEAR_AXIS_CODE(
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
m.pos_error.z = true_center.z - m.obj_center.z
m.pos_error.z = true_center.z - m.obj_center.z,
m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k)
);
}
#if ENABLED(CALIBRATION_REPORTING)
inline void report_measured_faces(const measurements_t &m) {
SERIAL_ECHOLNPGM("Sides:");
#if AXIS_CAN_CALIBRATE(Z)
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR(" Top: ", m.obj_side[TOP]);
#endif
#if ENABLED(CALIBRATION_MEASURE_LEFT)
@@ -326,11 +362,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
SERIAL_ECHOLNPAIR(" Right: ", m.obj_side[RIGHT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
#if HAS_Y_AXIS
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
#endif
#endif
#if ENABLED(CALIBRATION_MEASURE_BACK)
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
#if LINEAR_AXES >= 4
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.obj_side[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.obj_side[IMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 5
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.obj_side[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.obj_side[JMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 6
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.obj_side[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
@@ -344,6 +406,15 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.obj_center.y);
#endif
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.obj_center.z);
#if HAS_I_CENTER
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.obj_center.i);
#endif
#if HAS_J_CENTER
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.obj_center.j);
#endif
#if HAS_K_CENTER
SERIAL_ECHOLNPAIR_P(SP_K_STR, m.obj_center.k);
#endif
SERIAL_EOL();
}
@@ -357,7 +428,7 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPAIR(" Right: ", m.backlash[RIGHT]);
#endif
#endif
#if AXIS_CAN_CALIBRATE(Y)
#if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
#if ENABLED(CALIBRATION_MEASURE_FRONT)
SERIAL_ECHOLNPAIR(" Front: ", m.backlash[FRONT]);
#endif
@@ -365,9 +436,33 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPAIR(" Back: ", m.backlash[BACK]);
#endif
#endif
#if AXIS_CAN_CALIBRATE(Z)
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR(" Top: ", m.backlash[TOP]);
#endif
#if LINEAR_AXES >= 4 AXIS_CAN_CALIBRATE(I)
#if ENABLED(CALIBRATION_MEASURE_IMIN)
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.backlash[IMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_IMAX)
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.backlash[IMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 5 AXIS_CAN_CALIBRATE(J)
#if ENABLED(CALIBRATION_MEASURE_JMIN)
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.backlash[JMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_JMAX)
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.backlash[JMAXIMUM]);
#endif
#endif
#if LINEAR_AXES >= 6 AXIS_CAN_CALIBRATE(K)
#if ENABLED(CALIBRATION_MEASURE_KMIN)
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.backlash[KMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_KMAX)
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
@@ -375,29 +470,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_CHAR('T');
SERIAL_ECHO(active_extruder);
SERIAL_ECHOLNPGM(" Positional Error:");
#if HAS_X_CENTER
#if HAS_X_CENTER && AXIS_CAN_CALIBRATE(X)
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.pos_error.x);
#endif
#if HAS_Y_CENTER
#if HAS_Y_CENTER && AXIS_CAN_CALIBRATE(Y)
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.pos_error.y);
#endif
if (AXIS_CAN_CALIBRATE(Z)) SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#endif
#if HAS_I_CENTER && AXIS_CAN_CALIBRATE(I)
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.pos_error.i);
#endif
#if HAS_J_CENTER && AXIS_CAN_CALIBRATE(J)
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.pos_error.j);
#endif
#if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
#endif
SERIAL_EOL();
}
inline void report_measured_nozzle_dimensions(const measurements_t &m) {
SERIAL_ECHOLNPGM("Nozzle Tip Outer Dimensions:");
#if HAS_X_CENTER || HAS_Y_CENTER
#if HAS_X_CENTER
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
#endif
#else
UNUSED(m);
#if HAS_X_CENTER
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
#endif
#if HAS_Y_CENTER
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
#endif
SERIAL_EOL();
UNUSED(m);
}
#if HAS_HOTEND_OFFSET
@@ -446,8 +549,33 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
backlash.distance_mm.y = m.backlash[BACK];
#endif
if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP];
#endif
TERN_(HAS_Z_AXIS, if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP]);
#if HAS_I_CENTER
backlash.distance_mm.i = (m.backlash[IMINIMUM] + m.backlash[IMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_IMIN)
backlash.distance_mm.i = m.backlash[IMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_IMAX)
backlash.distance_mm.i = m.backlash[IMAXIMUM];
#endif
#if HAS_J_CENTER
backlash.distance_mm.j = (m.backlash[JMINIMUM] + m.backlash[JMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_JMIN)
backlash.distance_mm.j = m.backlash[JMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_JMAX)
backlash.distance_mm.j = m.backlash[JMAXIMUM];
#endif
#if HAS_K_CENTER
backlash.distance_mm.k = (m.backlash[KMINIMUM] + m.backlash[KMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_KMIN)
backlash.distance_mm.k = m.backlash[KMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_KMAX)
backlash.distance_mm.k = m.backlash[KMAXIMUM];
#endif
#endif // BACKLASH_GCODE
}
#if ENABLED(BACKLASH_GCODE)
@@ -458,7 +586,8 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
const xyz_float_t move = LINEAR_AXIS_ARRAY(
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3
);
current_position += move; calibration_move();
current_position -= move; calibration_move();
@@ -487,11 +616,7 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
TEMPORARY_BACKLASH_CORRECTION(all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
#if HAS_MULTI_HOTEND
set_nozzle(m, extruder);
#else
UNUSED(extruder);
#endif
TERN(HAS_MULTI_HOTEND, set_nozzle(m, extruder), UNUSED(extruder));
probe_sides(m, uncertainty);
@@ -510,6 +635,10 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
sync_plan_position();
}