249 lines
8.8 KiB
Python
249 lines
8.8 KiB
Python
import asyncio
|
|
from common_code.settings import LogColorize
|
|
import concurrent.futures
|
|
|
|
import string
|
|
from random import choices
|
|
from urllib import parse
|
|
from io import BytesIO
|
|
import requests
|
|
import cv2
|
|
import queue
|
|
|
|
import logging
|
|
import struct
|
|
import re
|
|
import pickle
|
|
import datetime as dt
|
|
from functools import partial
|
|
import cv2
|
|
import time
|
|
import multiprocessing
|
|
import threading
|
|
import numpy as np
|
|
import ctypes
|
|
import shutil
|
|
import hashlib
|
|
from hailo_platform import VDevice, HailoSchedulingAlgorithm, FormatType
|
|
import pickle
|
|
import json
|
|
import redis
|
|
import os
|
|
pfm = LogColorize.score_obj_det_embed
|
|
# %%
|
|
with open('/home/thebears/source/infer/species_list','r') as sl:
|
|
species_list = [x for x in sl.read().split('\n') if len(x) > 0]
|
|
|
|
r = redis.Redis('localhost',port=6379, db=14)
|
|
|
|
logger = logging.getLogger('live_inference')
|
|
|
|
def get_snap( url, username, password, proxies = None, timeout=5, save_image = None, camera_name = 'N/A'):
|
|
data = {
|
|
'cmd': 'Snap',
|
|
'channel': 0,
|
|
'rs': ''.join(choices(string.ascii_uppercase + string.digits, k=10)),
|
|
'snapType':'sub',
|
|
'user': username,
|
|
'password': password,
|
|
}
|
|
parms = parse.urlencode(data, safe="!").encode("utf-8")
|
|
|
|
try:
|
|
response = requests.get(url, proxies=proxies, params=parms, timeout=timeout)
|
|
if response.status_code == 200:
|
|
rearr = np.frombuffer(bytearray(response.content), dtype=np.uint8)
|
|
img_bgr = cv2.imdecode(rearr,cv2.IMREAD_COLOR)
|
|
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
|
if save_image is not None:
|
|
os.makedirs(os.path.dirname(save_image), exist_ok=True)
|
|
cv2.imwrite( save_image, img_bgr)
|
|
logging.info(f'{camera_name}: Wrote image to {save_image}')
|
|
|
|
logging.info(f'{camera_name}: Got image of {img_rgb.shape}')
|
|
return img_rgb
|
|
|
|
except Exception as e:
|
|
logging.error(f'{camera_name} failure: {str(e)}')
|
|
raise
|
|
|
|
|
|
# %%
|
|
def resize_image(img_in, reshape_to_final=False):
|
|
if not isinstance(img_in, np.ndarray):
|
|
img_in = np.asarray(img_in)
|
|
max_l = 640
|
|
|
|
asp_rat = img_in.shape[0] / img_in.shape[1]
|
|
if asp_rat < 1:
|
|
output_size = [int(asp_rat * max_l), max_l]
|
|
else:
|
|
output_size = [max_l, int(max_l / asp_rat)]
|
|
|
|
im_arr_not_pad = cv2.resize(img_in, output_size[::-1])
|
|
pad_amt = [max_l, max_l] - np.asarray(im_arr_not_pad.shape[0:2])
|
|
left_pad, top_pad = (pad_amt / 2).astype(np.int64)
|
|
right_pad, bottom_pad = pad_amt - [left_pad, top_pad]
|
|
|
|
im_pass = np.zeros(shape=(max_l, max_l, 3), dtype=np.uint8)
|
|
im_pass[left_pad:(max_l - right_pad),
|
|
top_pad:(max_l - bottom_pad)] = (im_arr_not_pad)
|
|
data = im_pass
|
|
if reshape_to_final:
|
|
data = np.moveaxis(data, [2], [0])[None, :, :, :]
|
|
|
|
return data
|
|
|
|
|
|
def model_scoring_callback(completion_info, bindings, data):
|
|
if completion_info.exception:
|
|
pass
|
|
ff = bindings.output().get_buffer()
|
|
camera_name = data['camera_name']
|
|
timestamp = data['image_timestamp']
|
|
hash_value = data['image_hash']
|
|
dump_model_results_to_json( camera_name, timestamp, ff, hash_value)
|
|
|
|
def round_floats(obj, decimals=4):
|
|
if isinstance(obj, float):
|
|
return round(obj, decimals)
|
|
elif isinstance(obj, dict):
|
|
return {k: round_floats(v, decimals) for k, v in obj.items()}
|
|
elif isinstance(obj, list):
|
|
return [round_floats(item, decimals) for item in obj]
|
|
return obj
|
|
|
|
|
|
|
|
def dump_model_results_to_json(camera_name, timestamp, output_array, hash_value):
|
|
has_scores = {idx:x for idx,x in enumerate(output_array) if len(x) > 0}
|
|
score_dict = {}
|
|
score_dict['timestamp'] = timestamp
|
|
score_dict['scores'] = list()
|
|
score_dict['image_hash'] = hash_value
|
|
for idx, sc in has_scores.items():
|
|
for r in sc:
|
|
score_dict['scores'].append({'idx': idx, 'species': species_list[idx], 'boxes':r[0:4].tolist(), 'score': r[4].tolist()})
|
|
|
|
|
|
json_str = json.dumps(round_floats(score_dict))
|
|
|
|
|
|
with open('/home/thebears/source/infer/scores/' + camera_name,'a') as ff:
|
|
ff.write(json_str)
|
|
ff.write('\n')
|
|
|
|
|
|
|
|
|
|
def run_model(img_scoring_queue):
|
|
timeout_ms = 1000
|
|
logger.info('Starting model scoring process')
|
|
params = VDevice.create_params()
|
|
params.scheduling_algorithm = HailoSchedulingAlgorithm.ROUND_ROBIN
|
|
with VDevice(params) as vdevice:
|
|
infer_model = vdevice.create_infer_model("yolov11l_inat.hef")
|
|
logger.info('Loaded model')
|
|
with infer_model.configure() as configured_infer_model:
|
|
bindings = configured_infer_model.create_bindings()
|
|
while True:
|
|
try:
|
|
# Use get with timeout for multiprocessing queue
|
|
res = img_scoring_queue.get(timeout=1.0)
|
|
r.set('model_inference_heartbeat',time.time())
|
|
inp = res['frame']
|
|
|
|
res_send = {'camera_name': res['camera_name'], 'image_timestamp': res['image_timestamp'], 'image_hash':res['image_hash']}
|
|
logger.info(f'Running inference for {res_send}')
|
|
r.set('model_inference_started',str(res_send))
|
|
|
|
bindings.input().set_buffer(inp)
|
|
output_array = np.zeros([infer_model.output().shape[0]]).astype(np.float32)
|
|
bindings.output().set_buffer(output_array)
|
|
|
|
configured_infer_model.run([bindings], timeout_ms)
|
|
|
|
job = configured_infer_model.run_async(
|
|
[bindings],
|
|
partial(model_scoring_callback, bindings=bindings, data=res_send),
|
|
)
|
|
r.set('model_inference_finished',str(res_send))
|
|
try:
|
|
job.wait(timeout_ms)
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
except:
|
|
# Handle both queue.Empty and multiprocessing timeout
|
|
continue
|
|
|
|
class SnapManager():
|
|
def __init__(self, ip, url_api, username, password, camera_name, msg_queue=None, img_scoring_queue=None, split_into_two=False, **kwargs):
|
|
self.ip = ip
|
|
self.url_api = url_api
|
|
self.username = username
|
|
self.password = password
|
|
self.camera_name = camera_name
|
|
self.split_into_two = split_into_two
|
|
self.msg_queue = msg_queue
|
|
self.img_scoring_queue = img_scoring_queue
|
|
logger.info(f"{self.camera_name}: initialized")
|
|
|
|
def format_image_for_model(self, image, timestamp):
|
|
msg = list()
|
|
if self.split_into_two:
|
|
split_point = int(image.shape[1] / 2)
|
|
left_frame = resize_image(image[:, :split_point, :])
|
|
right_frame = resize_image(image[:, split_point:, :])
|
|
|
|
msg.append({
|
|
'camera_name': self.camera_name + '_left',
|
|
'frame': left_frame,
|
|
'image_timestamp': timestamp,
|
|
'image_hash': hashlib.sha1(left_frame.tobytes()).hexdigest()
|
|
})
|
|
msg.append({
|
|
'camera_name': self.camera_name + '_right',
|
|
'frame': right_frame,
|
|
'image_timestamp': timestamp,
|
|
'image_hash': hashlib.sha1(right_frame.tobytes()).hexdigest()
|
|
})
|
|
else:
|
|
frame = resize_image(image)
|
|
msg.append({
|
|
'camera_name': self.camera_name,
|
|
'frame': frame,
|
|
'image_timestamp': timestamp,
|
|
'image_hash': hashlib.sha1(frame.tobytes()).hexdigest()
|
|
})
|
|
return msg
|
|
|
|
def capture_and_prepare(self):
|
|
img = get_snap(self.url_api,self.username, self.password, camera_name = self.camera_name)
|
|
if img is not None:
|
|
timestamp = time.time()
|
|
return self.format_image_for_model(img, timestamp)
|
|
return []
|
|
|
|
def run_forever(self):
|
|
while True:
|
|
try:
|
|
msg = self.msg_queue.get(timeout=0.1)
|
|
if msg == 'exit':
|
|
break
|
|
if msg == 'get':
|
|
logger.info(f'Processing capture for {self.camera_name}')
|
|
model_msgs = self.capture_and_prepare()
|
|
for model_msg in model_msgs:
|
|
# Use put_nowait for multiprocessing queue to avoid blocking
|
|
try:
|
|
self.img_scoring_queue.put_nowait(model_msg)
|
|
except:
|
|
# Queue full, skip this message
|
|
logger.warning(f"Model queue full, dropping message from {self.camera_name}")
|
|
except queue.Empty:
|
|
pass
|
|
|
|
def start_snap_manager(**kwargs):
|
|
obj = SnapManager(**kwargs)
|
|
obj.run_forever()
|