This commit is contained in:
The Bears
2025-10-27 14:10:54 -04:00
parent 73a2aead5f
commit e79a9f0458
23 changed files with 906 additions and 86 deletions

188
run_me.py
View File

@@ -2,7 +2,6 @@ import numpy as np
from functools import partial
from hailo_platform import VDevice, HailoSchedulingAlgorithm, FormatType
import cv2
import numpy as np
@@ -33,7 +32,6 @@ def resize_image(img_in, reshape_to_final=True):
return data
def model_scoring_callback(completion_info, bindings, data):
if completion_info.exception:
# handle exception
@@ -83,9 +81,11 @@ import multiprocessing
import numpy as np
import ctypes
import shutil
from utils import *
cameras = {
"camera_side": {
'url': "rtsp://admin:marybear@192.168.1.151:554/h264Preview_01_sub",
"camera_sidefeeder": {
'url': "rtsp://admin:marybear@192.168.1.157:554/h264Preview_01_sub",
'resolution': (480, 640, 3)
},
"camera_driveway": {
@@ -111,66 +111,93 @@ cameras = {
},
}
# # %%
# import os
# os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'rtsp_transport;udp'
# cap = cv2.VideoCapture(cameras['camera_railing']['url'])
# # %%
# while True:
# _, frame = cap.read()
# # %%
# _, frame = cap.read()
# cv2.imwrite('FRAME.jpg', frame)
# # %%
def format_gst_url(rtsp_url):
gst_pipeline = f"rtspsrc location={rtsp_url} latency=50 ! rtph264depay ! h264parse ! avdec_h264 ! videoconvert ! appsink max-buffers=1 drop=true"
return gst_pipeline
from functools import partial
cameras = dict()
for cam_name, details in cameras.items():
array_len = np.prod(details['resolution'])
rtsp_url = details['url']
resolution = details['resolution']
cameras[cam_name] = StreamManager( rtsp_url, resolution, cam_name)
# %%
details['cam_name'] = cam_name
details['img_array'] = multiprocessing.Array(ctypes.c_uint8,
int(array_len), lock = True)
int(array_len),
lock=True)
details['img_timestamp'] = multiprocessing.Value(ctypes.c_double)
details['queue'] = multiprocessing.Queue()
details['gst_pipeline_str'] = format_gst_url(details['url'])
details['rtsp_url'] = format_ffmpeg_decode_url(details['url']).split(" ")
details['process_func'] = partial(stream_wrapper,
details['resolution'],
details['rtsp_url'],
camera_name=cam_name,
queue=details['queue'],
img_array=details['img_array'],
img_timestamp=details['img_timestamp'])
for cam_name, details in cameras.items():
p = multiprocessing.Process(target = details['process_func'])
details['process'] = p
p.start()
# %%
img_array = details['img_array']
img_timestamp = details['img_timestamp']
import time
with img_timestamp.get_lock():
img_timestamp.value = -1
details['queue'].put('get')
for i in range(1000):
val = img_timestamp.value
print(val)
if val > 0:
print('Done')
break
time.sleep(0.001)
import datetime as dt
def rtsp_stream_manager( camera_name, gst_pipeline_str, queue, img_array, img_timestamp):
capture_handle = cv2.VideoCapture(gst_pipeline_str, cv2.CAP_GSTREAMER)
while True:
if not queue.empty():
msg = queue.get_nowait()
if msg == 'get':
ret, frame = capture_handle.read()
with img_timestamp.get_lock(), img_array.get_lock():
if frame is None:
print(f"Read empty frame for {camera_name}")
img_array[:] = 0
img_timestamp.value = 0
else:
print(f"Read frame for {camera_name} at {dt.datetime.now()}")
img_array[:] = frame.flatten()[:]
img_timestamp.value = time.time()
elif msg == 'restart':
print('Restarting')
capture_handle = cv2.VideoCapture(gst_pipeline_str, cv2.CAP_GSTREAMER)
elif msg == 'exit':
print('Exiting')
return
# %%
for cam_name, details in cameras.items():
details['queue'].put('get')
img_array = details['img_array']
img_timestamp = details['img_timestamp']
with img_array.get_lock(), img_timestamp.get_lock():
reshaped_image = np.frombuffer(details['img_array'].get_obj(),
dtype=np.uint8).reshape(
details['resolution'])
timestamp = img_timestamp.value
img_timestamp.value = -1
print('Writing for ' + cam_name + f' for {reshaped_image.shape}')
cv2.imwrite('images/'+ cam_name + '.jpg', reshaped_image)
# %%
import asyncio
img_scoring_queue = multiprocessing.Queue()
for cam_name, details in cameras.items():
p = multiprocessing.Process(target=rtsp_stream_manager,
args=(cam_name, details['gst_pipeline_str'],
details['queue'], details['img_array'], details['img_timestamp']))
details['queue'], details['img_array'],
details['img_timestamp']))
details['process'] = p
asyncio.create_task(details['async_task'])
shape = (512, 896, 3)
asyncio.run(read_stream(shape, cmd))
import datetime as dt
for cam_name, details in cameras.items():
details['process'].start()
# %%
@@ -180,60 +207,49 @@ for cam_name, details in cameras.items():
for cam_name, details in cameras.items():
details['queue'].put('get')
if os.path.exists('images/'):
shutil.rmtree('images/')
os.makedirs('images/')
os.makedirs('images/')
def create_score_message( details, reshaped_image, timestamp):
def create_score_message(details, reshaped_image, timestamp):
frames = list()
msg = list()
if details.get('split_into_two', False):
split_point = int(reshaped_image.shape[1]/2)
left_frame = resize_image(reshaped_image[:,:split_point,:], reshape_to_final = False)
right_frame = resize_image(reshaped_image[:,split_point:,:], reshape_to_final = False)
split_point = int(reshaped_image.shape[1] / 2)
left_frame = resize_image(reshaped_image[:, :split_point, :],
reshape_to_final=False)
right_frame = resize_image(reshaped_image[:, split_point:, :],
reshape_to_final=False)
left_frame = cv2.cvtColor(left_frame, cv2.COLOR_BGR2RGB)
right_frame = cv2.cvtColor(right_frame, cv2.COLOR_BGR2RGB)
msg.append({'camera_name': details['cam_name']+'_left', 'frame': left_frame, 'image_timestamp': timestamp})
msg.append({'camera_name': details['cam_name']+'_right', 'frame': right_frame, 'image_timestamp': timestamp})
right_frame = cv2.cvtColor(right_frame, cv2.COLOR_BGR2RGB)
msg.append({
'camera_name': details['cam_name'] + '_left',
'frame': left_frame,
'image_timestamp': timestamp
})
msg.append({
'camera_name': details['cam_name'] + '_right',
'frame': right_frame,
'image_timestamp': timestamp
})
else:
frame = resize_image(reshaped_image, reshape_to_final = False)
frame = resize_image(reshaped_image, reshape_to_final=False)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
msg.append({'camera_name': details['cam_name'], 'frame': frame, 'image_timestamp': timestamp})
msg.append({
'camera_name': details['cam_name'],
'frame': frame,
'image_timestamp': timestamp
})
return msg
for cam_name, details in cameras.items():
img_array = details['img_array']
img_timestamp = details['img_timestamp']
with img_array.get_lock(), img_timestamp.get_lock():
reshaped_image = np.frombuffer(details['img_array'].get_obj(), dtype=np.uint8).reshape(details['resolution'])
timestamp = img_timestamp.value
for msg in create_score_message(details, reshaped_image, timestamp):
img_scoring_queue.put(msg)
print('Writing for ' + cam_name + f' for {reshaped_image.shape}')
# cv2.imwrite('images/'+ cam_name + '.jpg', reshaped_image)
for x in range(img_scoring_queue.qsize()):
qu = img_scoring_queue.get()
print(qu['camera_name'],qu['frame'].shape)
cv2.imwrite(str(x)+'.jpg', qu['frame'])
qu = img_scoring_queue.get()
print(qu['camera_name'], qu['frame'].shape)
cv2.imwrite(str(x) + '.jpg', qu['frame'])