YACWC
This commit is contained in:
242
utils.py
242
utils.py
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
from common_code.settings import LogColorize
|
||||
import concurrent.futures
|
||||
|
||||
from common_code import kwq
|
||||
import string
|
||||
from random import choices
|
||||
from urllib import parse
|
||||
@@ -10,6 +10,7 @@ import requests
|
||||
import cv2
|
||||
import queue
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import struct
|
||||
import re
|
||||
@@ -29,21 +30,35 @@ import pickle
|
||||
import json
|
||||
import redis
|
||||
import os
|
||||
|
||||
pfm = LogColorize.score_obj_det_embed
|
||||
|
||||
publish = kwq.publish
|
||||
|
||||
# %%
|
||||
with open('/home/thebears/source/infer/species_list','r') as sl:
|
||||
with open('/home/thebears/source/infer/species_list', 'r') as sl:
|
||||
species_list = [x for x in sl.read().split('\n') if len(x) > 0]
|
||||
|
||||
r = redis.Redis('localhost',port=6379, db=14)
|
||||
r = redis.Redis('localhost', port=6379, db=14)
|
||||
|
||||
logger = logging.getLogger('live_inference')
|
||||
|
||||
def get_snap( url, username, password, proxies = None, timeout=5, save_image = None, camera_name = 'N/A', width = None, height = None):
|
||||
|
||||
def get_snap(url,
|
||||
username,
|
||||
password,
|
||||
proxies=None,
|
||||
timeout=5,
|
||||
save_image=None,
|
||||
camera_name='N/A',
|
||||
width=None,
|
||||
height=None,
|
||||
kafka_queue=None):
|
||||
data = {
|
||||
'cmd': 'Snap',
|
||||
'channel': 0,
|
||||
'rs': ''.join(choices(string.ascii_uppercase + string.digits, k=10)),
|
||||
'snapType':'sub',
|
||||
'snapType': 'sub',
|
||||
'user': username,
|
||||
'password': password,
|
||||
}
|
||||
@@ -53,25 +68,43 @@ def get_snap( url, username, password, proxies = None, timeout=5, save_image = N
|
||||
parms = parse.urlencode(data, safe="!").encode("utf-8")
|
||||
|
||||
try:
|
||||
response = requests.get(url, proxies=proxies, params=parms, timeout=timeout)
|
||||
response = requests.get(url,
|
||||
proxies=proxies,
|
||||
params=parms,
|
||||
timeout=timeout)
|
||||
if response.status_code == 200:
|
||||
|
||||
rearr = np.frombuffer(bytearray(response.content), dtype=np.uint8)
|
||||
img_bgr = cv2.imdecode(rearr,cv2.IMREAD_COLOR)
|
||||
img_bgr = cv2.imdecode(rearr, cv2.IMREAD_COLOR)
|
||||
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
|
||||
if save_image is not None:
|
||||
os.makedirs(os.path.dirname(save_image), exist_ok=True)
|
||||
cv2.imwrite( save_image, img_bgr)
|
||||
logging.info(f'{camera_name}: Wrote image to {save_image}')
|
||||
if kafka_queue is None:
|
||||
os.makedirs(os.path.dirname(save_image), exist_ok=True)
|
||||
cv2.imwrite(save_image, img_bgr)
|
||||
logging.info(f'{camera_name}: Wrote image to {save_image}')
|
||||
else:
|
||||
retval, buffer_jp = cv2.imencode('.jpg', img_bgr)
|
||||
# bbj = base64.b64encode(buffer_jp).decode()
|
||||
kafka_queue.put({
|
||||
'type': 'image',
|
||||
'data': {
|
||||
'image_bytes': buffer_jp,
|
||||
'timestamp': time.time(),
|
||||
'camera_name': camera_name
|
||||
}
|
||||
})
|
||||
|
||||
logging.info(f'{camera_name}: Wrote image to kafka queue')
|
||||
|
||||
logging.info(f'{camera_name}: Got image of {img_rgb.shape}')
|
||||
return img_rgb
|
||||
else:
|
||||
logging.info(f'{camera_name}: Got response code of {response.status_code}')
|
||||
logging.info(
|
||||
f'{camera_name}: Got response code of {response.status_code}')
|
||||
except Exception as e:
|
||||
logging.error(f'{camera_name} failure: {str(e)}')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
def resize_image(img_in, reshape_to_final=False):
|
||||
if not isinstance(img_in, np.ndarray):
|
||||
@@ -99,14 +132,49 @@ def resize_image(img_in, reshape_to_final=False):
|
||||
return data
|
||||
|
||||
|
||||
def model_scoring_callback(completion_info, bindings, data):
|
||||
def kafka_poster(kafka_results_queue):
|
||||
while True:
|
||||
msg = kafka_results_queue.get()
|
||||
msg_type = msg.get('type', 'n/a')
|
||||
if msg_type in {'objdet'}:
|
||||
data = msg['data']
|
||||
cam_name = data['camera_name']
|
||||
topic_name = f'streaming_{cam_name}_{msg_type}'
|
||||
kwq.kafka_client.send(topic=topic_name,
|
||||
key=data['timestamp'],
|
||||
value=data)
|
||||
elif msg_type in {'image'}:
|
||||
data = msg['data']
|
||||
cam_name = data['camera_name']
|
||||
topic_name = f'streaming_{cam_name}_{msg_type}'
|
||||
kwq.kafka_client.send(topic=topic_name,
|
||||
key=data['timestamp'],
|
||||
value=data['image_bytes'],
|
||||
serialize_value=False)
|
||||
|
||||
|
||||
def model_scoring_callback(completion_info, bindings, data, kafka_queue):
|
||||
if completion_info.exception:
|
||||
pass
|
||||
ff = bindings.output().get_buffer()
|
||||
camera_name = data['camera_name']
|
||||
timestamp = data['image_timestamp']
|
||||
hash_value = data['image_hash']
|
||||
dump_model_results_to_json( camera_name, timestamp, ff, hash_value)
|
||||
ret_obj = dump_model_results_to_json(camera_name, timestamp, ff,
|
||||
hash_value)
|
||||
|
||||
max_score = 0.0
|
||||
for sc in ret_obj['scores']:
|
||||
max_score = max( max_score , sc['score'])
|
||||
|
||||
ret_obj['max_score'] = max_score
|
||||
if max_score > 0.25:
|
||||
oi = data['og_image']
|
||||
retval, buffer_jp = cv2.imencode('.jpg',cv2.cvtColor(oi, cv2.COLOR_RGB2BGR))
|
||||
ret_obj['image_bytes'] = base64.b64encode(buffer_jp).decode()
|
||||
|
||||
kafka_queue.put({'type': 'objdet', 'data': ret_obj})
|
||||
|
||||
|
||||
def round_floats(obj, decimals=4):
|
||||
if isinstance(obj, float):
|
||||
@@ -118,30 +186,43 @@ def round_floats(obj, decimals=4):
|
||||
return obj
|
||||
|
||||
|
||||
|
||||
def dump_model_results_to_json(camera_name, timestamp, output_array, hash_value):
|
||||
has_scores = {idx:x for idx,x in enumerate(output_array) if len(x) > 0}
|
||||
def dump_model_results_to_json(camera_name,
|
||||
timestamp,
|
||||
output_array,
|
||||
hash_value,
|
||||
no_write=True,
|
||||
return_dict=True):
|
||||
has_scores = {idx: x for idx, x in enumerate(output_array) if len(x) > 0}
|
||||
score_dict = {}
|
||||
score_dict['camera_name'] = camera_name
|
||||
score_dict['timestamp'] = timestamp
|
||||
score_dict['scores'] = list()
|
||||
score_dict['image_hash'] = hash_value
|
||||
|
||||
for idx, sc in has_scores.items():
|
||||
for r in sc:
|
||||
score_dict['scores'].append({'idx': idx, 'species': species_list[idx], 'boxes':r[0:4].tolist(), 'score': r[4].tolist()})
|
||||
score_dict['scores'].append({
|
||||
'idx': idx,
|
||||
'species': species_list[idx],
|
||||
'boxes': r[0:4].tolist(),
|
||||
'score': r[4].tolist()
|
||||
})
|
||||
|
||||
rnd_score_dict = round_floats(score_dict)
|
||||
if return_dict and no_write:
|
||||
return rnd_score_dict
|
||||
|
||||
json_str = json.dumps(rnd_score_dict)
|
||||
|
||||
if not no_write:
|
||||
rt_path = '/home/thebears/source/infer/scores/'
|
||||
os.makedirs(rt_path, exist_ok=True)
|
||||
with open(rt_path + camera_name, 'a') as ff:
|
||||
ff.write(json_str)
|
||||
ff.write('\n')
|
||||
|
||||
|
||||
json_str = json.dumps(round_floats(score_dict))
|
||||
|
||||
rt_path = '/home/thebears/source/infer/scores/'
|
||||
os.makedirs(rt_path, exist_ok = True)
|
||||
with open(rt_path + camera_name,'a') as ff:
|
||||
ff.write(json_str)
|
||||
ff.write('\n')
|
||||
|
||||
|
||||
|
||||
|
||||
def run_model(img_scoring_queue):
|
||||
def run_model(img_scoring_queue, kafka_results_queue):
|
||||
timeout_ms = 1000
|
||||
logger.info('Starting model scoring process')
|
||||
params = VDevice.create_params()
|
||||
@@ -155,24 +236,32 @@ def run_model(img_scoring_queue):
|
||||
try:
|
||||
# Use get with timeout for multiprocessing queue
|
||||
res = img_scoring_queue.get(timeout=1.0)
|
||||
r.set('model_inference_heartbeat',time.time())
|
||||
r.set('model_inference_heartbeat', time.time())
|
||||
inp = res['frame']
|
||||
|
||||
res_send = {'camera_name': res['camera_name'], 'image_timestamp': res['image_timestamp'], 'image_hash':res['image_hash']}
|
||||
|
||||
res_send = {
|
||||
'camera_name': res['camera_name'],
|
||||
'image_timestamp': res['image_timestamp'],
|
||||
'image_hash': res['image_hash'],
|
||||
'og_image': res['og_image']
|
||||
}
|
||||
logger.info(f'Running inference for {res_send}')
|
||||
r.set('model_inference_started',str(res_send))
|
||||
|
||||
r.set('model_inference_started', str(res_send))
|
||||
|
||||
bindings.input().set_buffer(inp)
|
||||
output_array = np.zeros([infer_model.output().shape[0]]).astype(np.float32)
|
||||
output_array = np.zeros([infer_model.output().shape[0]
|
||||
]).astype(np.float32)
|
||||
bindings.output().set_buffer(output_array)
|
||||
|
||||
configured_infer_model.run([bindings], timeout_ms)
|
||||
|
||||
|
||||
job = configured_infer_model.run_async(
|
||||
[bindings],
|
||||
partial(model_scoring_callback, bindings=bindings, data=res_send),
|
||||
)
|
||||
r.set('model_inference_finished',str(res_send))
|
||||
partial(model_scoring_callback,
|
||||
bindings=bindings,
|
||||
data=res_send,
|
||||
kafka_queue=kafka_results_queue))
|
||||
r.set('model_inference_finished', str(res_send))
|
||||
try:
|
||||
job.wait(timeout_ms)
|
||||
except Exception as e:
|
||||
@@ -181,11 +270,25 @@ def run_model(img_scoring_queue):
|
||||
# Handle both queue.Empty and multiprocessing timeout
|
||||
continue
|
||||
|
||||
|
||||
class SnapManager():
|
||||
def __init__(self, ip, url_api, username, password, camera_name, msg_queue=None, img_scoring_queue=None, split_into_two=False, resolution = None, **kwargs):
|
||||
|
||||
def __init__(self,
|
||||
ip,
|
||||
url_api,
|
||||
username,
|
||||
password,
|
||||
camera_name,
|
||||
msg_queue=None,
|
||||
img_scoring_queue=None,
|
||||
kafka_queue=None,
|
||||
split_into_two=False,
|
||||
resolution=None,
|
||||
**kwargs):
|
||||
self.ip = ip
|
||||
self.url_api = url_api
|
||||
self.username = username
|
||||
self.kafka_queue = kafka_queue
|
||||
self.password = password
|
||||
self.camera_name = camera_name
|
||||
self.split_into_two = split_into_two
|
||||
@@ -198,20 +301,32 @@ class SnapManager():
|
||||
msg = list()
|
||||
if self.split_into_two:
|
||||
split_point = int(image.shape[1] / 2)
|
||||
left_frame = resize_image(image[:, :split_point, :])
|
||||
right_frame = resize_image(image[:, split_point:, :])
|
||||
left_og_image = image[:, :split_point, :]
|
||||
right_og_image = image[:, split_point:, :]
|
||||
left_frame = resize_image(left_og_image)
|
||||
right_frame = resize_image(right_og_image)
|
||||
|
||||
msg.append({
|
||||
'camera_name': self.camera_name + '_left',
|
||||
'frame': left_frame,
|
||||
'image_timestamp': timestamp,
|
||||
'image_hash': hashlib.sha1(left_frame.tobytes()).hexdigest()
|
||||
'camera_name':
|
||||
self.camera_name + '_left',
|
||||
'frame':
|
||||
left_frame,
|
||||
'image_timestamp':
|
||||
timestamp,
|
||||
'image_hash':
|
||||
hashlib.sha1(left_frame.tobytes()).hexdigest(),
|
||||
'og_image': left_og_image
|
||||
})
|
||||
msg.append({
|
||||
'camera_name': self.camera_name + '_right',
|
||||
'frame': right_frame,
|
||||
'image_timestamp': timestamp,
|
||||
'image_hash': hashlib.sha1(right_frame.tobytes()).hexdigest()
|
||||
'camera_name':
|
||||
self.camera_name + '_right',
|
||||
'frame':
|
||||
right_frame,
|
||||
'image_timestamp':
|
||||
timestamp,
|
||||
'image_hash':
|
||||
hashlib.sha1(right_frame.tobytes()).hexdigest(),
|
||||
'og_image': right_og_image
|
||||
})
|
||||
else:
|
||||
frame = resize_image(image)
|
||||
@@ -219,18 +334,26 @@ class SnapManager():
|
||||
'camera_name': self.camera_name,
|
||||
'frame': frame,
|
||||
'image_timestamp': timestamp,
|
||||
'image_hash': hashlib.sha1(frame.tobytes()).hexdigest()
|
||||
'image_hash': hashlib.sha1(frame.tobytes()).hexdigest(),
|
||||
'og_image':image
|
||||
})
|
||||
return msg
|
||||
|
||||
def capture_and_prepare(self, save_image = None):
|
||||
def capture_and_prepare(self, save_image=None):
|
||||
if self.resolution is not None:
|
||||
width = self.resolution[1]
|
||||
height = self.resolution[0]
|
||||
else:
|
||||
width = None
|
||||
height = None
|
||||
img = get_snap(self.url_api,self.username, self.password, camera_name = self.camera_name, save_image= save_image, width = width, height = height)
|
||||
img = get_snap(self.url_api,
|
||||
self.username,
|
||||
self.password,
|
||||
camera_name=self.camera_name,
|
||||
save_image=save_image,
|
||||
kafka_queue=self.kafka_queue,
|
||||
width=width,
|
||||
height=height)
|
||||
if img is not None:
|
||||
timestamp = time.time()
|
||||
return self.format_image_for_model(img, timestamp)
|
||||
@@ -244,21 +367,26 @@ class SnapManager():
|
||||
break
|
||||
elif msg.startswith('get'):
|
||||
if '+save' in msg:
|
||||
save_image = 'images/'+self.camera_name +'/'+ str(time.time()) + '.jpg'
|
||||
save_image = 'images/' + self.camera_name + '/' + str(
|
||||
time.time()) + '.jpg'
|
||||
else:
|
||||
save_image = None
|
||||
logger.info(f'Processing capture for {self.camera_name}')
|
||||
model_msgs = self.capture_and_prepare(save_image = save_image)
|
||||
model_msgs = self.capture_and_prepare(
|
||||
save_image=save_image)
|
||||
for model_msg in model_msgs:
|
||||
# Use put_nowait for multiprocessing queue to avoid blocking
|
||||
try:
|
||||
self.img_scoring_queue.put_nowait(model_msg)
|
||||
except:
|
||||
# Queue full, skip this message
|
||||
logger.warning(f"Model queue full, dropping message from {self.camera_name}")
|
||||
logger.warning(
|
||||
f"Model queue full, dropping message from {self.camera_name}"
|
||||
)
|
||||
except queue.Empty:
|
||||
pass
|
||||
|
||||
|
||||
def start_snap_manager(**kwargs):
|
||||
obj = SnapManager(**kwargs)
|
||||
obj.run_forever()
|
||||
|
||||
Reference in New Issue
Block a user