Files
inaturalist_pytorch_model/train.py
2021-09-27 16:02:11 -04:00

127 lines
3.5 KiB
Python

# %%
from engine import train_one_epoch, evaluate
from model import Model
from data import iNaturalistDataset
import torch
import os
import datetime as dt
import json
import utils
import pandas as pd
import sys
if not os.path.exists("models/"):
os.mkdir("models")
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
default_model_root = "models/" + dt.datetime.now().strftime("%Y%m%d_%H%M%S")
default_model_path = default_model_root + ".pth"
default_model_info = default_model_root + ".json"
default_state_path = default_model_root + ".oth"
#species_list = set(["Poecile atricapillus", "Archilochus colubris", "Icterus galbula"])
csv_path = '/home/thebears/Seafile/Designs/ML/inaturalist_models/species_occurence.csv'
df = pd.read_csv(csv_path)
species_list = set(list(df[df['count']>1000]['species']))
#model_type = "fasterrcnn_mobilenet_v3_large_fpn"
#batch_size = 16
model_type = 'fasterrcnn_resnet50_fpn'
batch_size = 8
def run(model_name = None, epoch_start = 0):
val_dataset = iNaturalistDataset(
validation=True,
species=species_list,
)
train_dataset = iNaturalistDataset(
train=True,
species=species_list,
)
if model_name is None:
fresh_start = True
model_info = default_model_info
model_path = default_model_path
state_path = default_state_path
else:
fresh_start = False
model_info = model_name.rstrip('.pth').rstrip('.json')+'.json'
model_path = model_info.rstrip('.json')+'.pth'
state_path = model_info.rstrip('.json')+'.oth'
if fresh_start:
with open(model_info, "w") as js_p:
json.dump(
{"categories": train_dataset.categories, "model_type": model_type},
js_p,
default=str,
indent=4,
)
train_data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=10,
collate_fn=utils.collate_fn,
)
val_data_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=10,
collate_fn=utils.collate_fn,
)
num_classes = len(species_list) + 1
model = Model(num_classes, model_type)
model.to(device)
if not fresh_start:
model.load_state_dict(
torch.load(model_path, map_location = torch.device(device))
)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
if os.path.exists(state_path):
optimizer.load_state_dict(torch.load(state_path, map_location = torch.device(device)))
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
num_epochs = 10
for epoch in range(epoch_start, num_epochs):
train_one_epoch(
model, optimizer, train_data_loader, device, epoch, print_freq=10 )
lr_scheduler.step()
torch.save(model.state_dict(), model_path)
torch.save(optimizer.state_dict(), state_path)
evaluate(model, val_data_loader, device=device)
if __name__ == "__main__":
if len(sys.argv) == 3:
model_name = sys.argv[1]
epoch_start = int(sys.argv[2])
run(model_name = model_name, epoch_start = epoch_start)
else:
run()
# run()