353 lines
12 KiB
Python
353 lines
12 KiB
Python
import json
|
|
import tempfile
|
|
|
|
import numpy as np
|
|
import copy
|
|
import time
|
|
import torch
|
|
import torch._six
|
|
|
|
from pycocotools.cocoeval import COCOeval
|
|
from pycocotools.coco import COCO
|
|
import pycocotools.mask as mask_util
|
|
|
|
from collections import defaultdict
|
|
|
|
import utils
|
|
|
|
|
|
class CocoEvaluator(object):
|
|
def __init__(self, coco_gt, iou_types):
|
|
assert isinstance(iou_types, (list, tuple))
|
|
coco_gt = copy.deepcopy(coco_gt)
|
|
self.coco_gt = coco_gt
|
|
|
|
self.iou_types = iou_types
|
|
self.coco_eval = {}
|
|
for iou_type in iou_types:
|
|
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
|
|
|
self.img_ids = []
|
|
self.eval_imgs = {k: [] for k in iou_types}
|
|
|
|
def update(self, predictions):
|
|
img_ids = list(np.unique(list(predictions.keys())))
|
|
self.img_ids.extend(img_ids)
|
|
|
|
for iou_type in self.iou_types:
|
|
results = self.prepare(predictions, iou_type)
|
|
coco_dt = loadRes(self.coco_gt, results) if results else COCO()
|
|
coco_eval = self.coco_eval[iou_type]
|
|
|
|
coco_eval.cocoDt = coco_dt
|
|
coco_eval.params.imgIds = list(img_ids)
|
|
img_ids, eval_imgs = evaluate(coco_eval)
|
|
|
|
self.eval_imgs[iou_type].append(eval_imgs)
|
|
|
|
def synchronize_between_processes(self):
|
|
for iou_type in self.iou_types:
|
|
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
|
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
|
|
|
def accumulate(self):
|
|
for coco_eval in self.coco_eval.values():
|
|
coco_eval.accumulate()
|
|
|
|
def summarize(self):
|
|
for iou_type, coco_eval in self.coco_eval.items():
|
|
print("IoU metric: {}".format(iou_type))
|
|
coco_eval.summarize()
|
|
|
|
def prepare(self, predictions, iou_type):
|
|
if iou_type == "bbox":
|
|
return self.prepare_for_coco_detection(predictions)
|
|
elif iou_type == "segm":
|
|
return self.prepare_for_coco_segmentation(predictions)
|
|
elif iou_type == "keypoints":
|
|
return self.prepare_for_coco_keypoint(predictions)
|
|
else:
|
|
raise ValueError("Unknown iou type {}".format(iou_type))
|
|
|
|
def prepare_for_coco_detection(self, predictions):
|
|
coco_results = []
|
|
for original_id, prediction in predictions.items():
|
|
if len(prediction) == 0:
|
|
continue
|
|
|
|
boxes = prediction["boxes"]
|
|
boxes = convert_to_xywh(boxes).tolist()
|
|
scores = prediction["scores"].tolist()
|
|
labels = prediction["labels"].tolist()
|
|
|
|
coco_results.extend(
|
|
[
|
|
{
|
|
"image_id": original_id,
|
|
"category_id": labels[k],
|
|
"bbox": box,
|
|
"score": scores[k],
|
|
}
|
|
for k, box in enumerate(boxes)
|
|
]
|
|
)
|
|
return coco_results
|
|
|
|
def prepare_for_coco_segmentation(self, predictions):
|
|
coco_results = []
|
|
for original_id, prediction in predictions.items():
|
|
if len(prediction) == 0:
|
|
continue
|
|
|
|
scores = prediction["scores"]
|
|
labels = prediction["labels"]
|
|
masks = prediction["masks"]
|
|
|
|
masks = masks > 0.5
|
|
|
|
scores = prediction["scores"].tolist()
|
|
labels = prediction["labels"].tolist()
|
|
|
|
rles = [
|
|
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
|
|
for mask in masks
|
|
]
|
|
for rle in rles:
|
|
rle["counts"] = rle["counts"].decode("utf-8")
|
|
|
|
coco_results.extend(
|
|
[
|
|
{
|
|
"image_id": original_id,
|
|
"category_id": labels[k],
|
|
"segmentation": rle,
|
|
"score": scores[k],
|
|
}
|
|
for k, rle in enumerate(rles)
|
|
]
|
|
)
|
|
return coco_results
|
|
|
|
def prepare_for_coco_keypoint(self, predictions):
|
|
coco_results = []
|
|
for original_id, prediction in predictions.items():
|
|
if len(prediction) == 0:
|
|
continue
|
|
|
|
boxes = prediction["boxes"]
|
|
boxes = convert_to_xywh(boxes).tolist()
|
|
scores = prediction["scores"].tolist()
|
|
labels = prediction["labels"].tolist()
|
|
keypoints = prediction["keypoints"]
|
|
keypoints = keypoints.flatten(start_dim=1).tolist()
|
|
|
|
coco_results.extend(
|
|
[
|
|
{
|
|
"image_id": original_id,
|
|
"category_id": labels[k],
|
|
'keypoints': keypoint,
|
|
"score": scores[k],
|
|
}
|
|
for k, keypoint in enumerate(keypoints)
|
|
]
|
|
)
|
|
return coco_results
|
|
|
|
|
|
def convert_to_xywh(boxes):
|
|
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
|
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
|
|
|
|
|
def merge(img_ids, eval_imgs):
|
|
all_img_ids = utils.all_gather(img_ids)
|
|
all_eval_imgs = utils.all_gather(eval_imgs)
|
|
|
|
merged_img_ids = []
|
|
for p in all_img_ids:
|
|
merged_img_ids.extend(p)
|
|
|
|
merged_eval_imgs = []
|
|
for p in all_eval_imgs:
|
|
merged_eval_imgs.append(p)
|
|
|
|
merged_img_ids = np.array(merged_img_ids)
|
|
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
|
|
|
# keep only unique (and in sorted order) images
|
|
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
|
merged_eval_imgs = merged_eval_imgs[..., idx]
|
|
|
|
return merged_img_ids, merged_eval_imgs
|
|
|
|
|
|
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
|
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
|
img_ids = list(img_ids)
|
|
eval_imgs = list(eval_imgs.flatten())
|
|
|
|
coco_eval.evalImgs = eval_imgs
|
|
coco_eval.params.imgIds = img_ids
|
|
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
|
|
|
|
|
#################################################################
|
|
# From pycocotools, just removed the prints and fixed
|
|
# a Python3 bug about unicode not defined
|
|
#################################################################
|
|
|
|
# Ideally, pycocotools wouldn't have hard-coded prints
|
|
# so that we could avoid copy-pasting those two functions
|
|
|
|
def createIndex(self):
|
|
# create index
|
|
# print('creating index...')
|
|
anns, cats, imgs = {}, {}, {}
|
|
imgToAnns, catToImgs = defaultdict(list), defaultdict(list)
|
|
if 'annotations' in self.dataset:
|
|
for ann in self.dataset['annotations']:
|
|
imgToAnns[ann['image_id']].append(ann)
|
|
anns[ann['id']] = ann
|
|
|
|
if 'images' in self.dataset:
|
|
for img in self.dataset['images']:
|
|
imgs[img['id']] = img
|
|
|
|
if 'categories' in self.dataset:
|
|
for cat in self.dataset['categories']:
|
|
cats[cat['id']] = cat
|
|
|
|
if 'annotations' in self.dataset and 'categories' in self.dataset:
|
|
for ann in self.dataset['annotations']:
|
|
catToImgs[ann['category_id']].append(ann['image_id'])
|
|
|
|
# print('index created!')
|
|
|
|
# create class members
|
|
self.anns = anns
|
|
self.imgToAnns = imgToAnns
|
|
self.catToImgs = catToImgs
|
|
self.imgs = imgs
|
|
self.cats = cats
|
|
|
|
|
|
maskUtils = mask_util
|
|
|
|
|
|
def loadRes(self, resFile):
|
|
"""
|
|
Load result file and return a result api object.
|
|
Args:
|
|
self (obj): coco object with ground truth annotations
|
|
resFile (str): file name of result file
|
|
Returns:
|
|
res (obj): result api object
|
|
"""
|
|
res = COCO()
|
|
res.dataset['images'] = [img for img in self.dataset['images']]
|
|
|
|
# print('Loading and preparing results...')
|
|
# tic = time.time()
|
|
if isinstance(resFile, torch._six.string_classes):
|
|
anns = json.load(open(resFile))
|
|
elif type(resFile) == np.ndarray:
|
|
anns = self.loadNumpyAnnotations(resFile)
|
|
else:
|
|
anns = resFile
|
|
assert type(anns) == list, 'results in not an array of objects'
|
|
annsImgIds = [ann['image_id'] for ann in anns]
|
|
assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \
|
|
'Results do not correspond to current coco set'
|
|
if 'caption' in anns[0]:
|
|
imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns])
|
|
res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds]
|
|
for id, ann in enumerate(anns):
|
|
ann['id'] = id + 1
|
|
elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
|
|
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
|
|
for id, ann in enumerate(anns):
|
|
bb = ann['bbox']
|
|
x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
|
|
if 'segmentation' not in ann:
|
|
ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
|
|
ann['area'] = bb[2] * bb[3]
|
|
ann['id'] = id + 1
|
|
ann['iscrowd'] = 0
|
|
elif 'segmentation' in anns[0]:
|
|
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
|
|
for id, ann in enumerate(anns):
|
|
# now only support compressed RLE format as segmentation results
|
|
ann['area'] = maskUtils.area(ann['segmentation'])
|
|
if 'bbox' not in ann:
|
|
ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
|
|
ann['id'] = id + 1
|
|
ann['iscrowd'] = 0
|
|
elif 'keypoints' in anns[0]:
|
|
res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
|
|
for id, ann in enumerate(anns):
|
|
s = ann['keypoints']
|
|
x = s[0::3]
|
|
y = s[1::3]
|
|
x1, x2, y1, y2 = np.min(x), np.max(x), np.min(y), np.max(y)
|
|
ann['area'] = (x2 - x1) * (y2 - y1)
|
|
ann['id'] = id + 1
|
|
ann['bbox'] = [x1, y1, x2 - x1, y2 - y1]
|
|
# print('DONE (t={:0.2f}s)'.format(time.time()- tic))
|
|
|
|
res.dataset['annotations'] = anns
|
|
createIndex(res)
|
|
return res
|
|
|
|
|
|
def evaluate(self):
|
|
'''
|
|
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
|
:return: None
|
|
'''
|
|
# tic = time.time()
|
|
# print('Running per image evaluation...')
|
|
p = self.params
|
|
# add backward compatibility if useSegm is specified in params
|
|
if p.useSegm is not None:
|
|
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
|
|
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
|
|
# print('Evaluate annotation type *{}*'.format(p.iouType))
|
|
p.imgIds = list(np.unique(p.imgIds))
|
|
if p.useCats:
|
|
p.catIds = list(np.unique(p.catIds))
|
|
p.maxDets = sorted(p.maxDets)
|
|
self.params = p
|
|
|
|
self._prepare()
|
|
# loop through images, area range, max detection number
|
|
catIds = p.catIds if p.useCats else [-1]
|
|
|
|
if p.iouType == 'segm' or p.iouType == 'bbox':
|
|
computeIoU = self.computeIoU
|
|
elif p.iouType == 'keypoints':
|
|
computeIoU = self.computeOks
|
|
self.ious = {
|
|
(imgId, catId): computeIoU(imgId, catId)
|
|
for imgId in p.imgIds
|
|
for catId in catIds}
|
|
|
|
evaluateImg = self.evaluateImg
|
|
maxDet = p.maxDets[-1]
|
|
evalImgs = [
|
|
evaluateImg(imgId, catId, areaRng, maxDet)
|
|
for catId in catIds
|
|
for areaRng in p.areaRng
|
|
for imgId in p.imgIds
|
|
]
|
|
# this is NOT in the pycocotools code, but could be done outside
|
|
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
|
|
self._paramsEval = copy.deepcopy(self.params)
|
|
# toc = time.time()
|
|
# print('DONE (t={:0.2f}s).'.format(toc-tic))
|
|
return p.imgIds, evalImgs
|
|
|
|
#################################################################
|
|
# end of straight copy from pycocotools, just removing the prints
|
|
#################################################################
|