Files
inaturalist_pytorch_model/data.py
2021-07-01 15:41:04 -04:00

126 lines
4.0 KiB
Python

# %%
import os
import torch
from PIL import Image
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import json
import torch
from torchvision import transforms as T
import os
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
if sys.platform == 'win32':
PATH_ROOT = r"D:\ishan\ml\inaturalist\\"
else:
raise NotImplementedError("Not defined for this platform")
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
def create_map(list_in, from_key, to_key):
cmap = dict()
for l in list_in:
cmap[l[from_key]] = l[to_key]
return cmap
class iNaturalistDataset(torch.utils.data.Dataset):
def __init__(self, validation=False, train=False, transforms = None, species = None):
self.validation = validation
self.train = train
if (self.train or self.validation) or (self.train and self.validation)
raise Exception("Need to do either train or validation")
self.transforms = get_transform(self.train)
if validation:
json_path = os.path.join(PATH_ROOT, "val_2017_bboxes","val_2017_bboxes.json")
elif train:
json_path = os.path.join(
PATH_ROOT, "train_2017_bboxes","train_2017_bboxes.json"
)
with open(json_path, "r") as rj:
f = json.load(rj)
categories = list()
image_info = dict()
for category in f["categories"]:
do_add = False
if species is None:
do_add = True
if category['name'] in species:
print(category['name'])
categories.append(category)
categories = sorted(categories, key=lambda k: k["name"])
for idx, cat in enumerate(categories):
cat["new_id"] = idx + 1
orig_to_new_id = create_map(categories, "id", "new_id")
for annot in f["annotations"]:
if annot["category_id"] in orig_to_new_id:
annot["new_category_id"] = orig_to_new_id[annot["category_id"]]
id = annot["image_id"]
if id not in image_info:
image_info[id] = dict()
annot["bbox"][2] += annot["bbox"][0]
annot["bbox"][3] += annot["bbox"][1]
image_info[id]["annotation"] = annot
for img in f["images"]:
id = img["id"]
path = os.path.join(PATH_ROOT, img["file_name"])
height = img["height"]
width = img["width"]
if id in image_info:
image_info[id].update({"path": path, "height": height, "width": width})
for idx, (id, im_in) in enumerate(image_info.items()):
im_in["idx"] = idx
self.images = image_info
self.categories = categories
self.idx_to_id = [x for x in self.images]
self.num_classes = len(self.categories) + 1
self.num_samples = len(self.images)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
idd = self.idx_to_id[idx]
c_image = self.images[idd]
img_path = c_image["path"]
img = Image.open(img_path).convert("RGB")
annot = c_image["annotation"]
bbox = annot["bbox"]
boxes = bbox
target = dict()
target["boxes"] = torch.as_tensor([boxes])
target["labels"] = torch.as_tensor([annot["new_category_id"]], dtype=torch.int64)
target['image_id'] = torch.tensor([annot['image_id']])
target['area'] = torch.as_tensor([annot['area']])
target['iscrowd'] = torch.zeros((1,), dtype=torch.int64)
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target