# %% import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from collections import defaultdict as ddict import json import torch from torchvision import datasets, transforms as T import cv2 import numpy as np import os import sys sys.path.append(r"K:\Designs\ML\inaturalist_models\data_aug") sys.path.append(r"K:\Designs\ML\inaturalist_models\vision") model = torchvision.models.detection.fasterrcnn_resnet50_fpn(num_classes = 2) model.load_state_dict(torch.load('K:\Designs\ML\inaturalist_models\model_weights_start_9.pth')) model.eval() model.to('cuda') import random rtdir = r'J:\hummingbird_imagenet\hummingbird' ff = os.listdir(rtdir) # %% img = os.path.join(rtdir,random.choice(ff)) image = cv2.imread(img)[:,:,::-1].copy() o = T.ToTensor()(image).cuda() img = o[None, :, :, :] ou = model(img) from torchvision.utils import draw_bounding_boxes import torch as t oimage = t.tensor(image, dtype=t.uint8).permute([2,0,1]) import matplotlib.pyplot as plt ox = draw_bounding_boxes(oimage, ou[0]['boxes'], width=1) plt.imshow(ox.permute([1,2,0])) # %% from data import iNaturalistDataset sd = iNaturalistDataset(validation=True) # %%